
CUE Front

Developer Guide
1.22.2-3

Table of Contents

1 Introduction.. 7

1.1 CUE Front for Designers..8

1.1.1 What is Patternlab?...9

1.1.2 What is Twig?..9

1.2 CUE Front for Developers..9

1.2.1 What is a Recipe?...9

1.2.2 What is GraphQL?.. 10

1.2.3 What Does the Cleaver Do?... 11

1.3 The CUE Front Start Pack... 11

2 Getting Started...12

2.1 Quick Start for Test/Development.. 12

2.1.1 Installing Docker.. 12

2.1.2 Getting a Publication Pack..15

2.1.3 Getting the CUE Front start pack..16

2.1.4 Installing the CUE Front Components...16

2.1.5 Starting CUE Front..20

2.1.6 Managing the CUE Front Containers..22

2.1.7 Analytics Configuration..24

2.2 Quick Start for Designers... 24

2.2.1 Installing for Designers..25

2.2.2 Starting the CUE Front Design Tools... 25

3 Upgrading...26

3.1 Upgrade Procedure.. 26

3.1.1 Upgrading Cook and Cleaver..27

4 Using CUE Front... 28

4.1 Updating a GraphQL Schema..28

4.2 Working with GraphQL... 29

4.2.1 The GraphiQL Editor... 30

4.2.2 Understanding CUE Front GraphQL Queries..33

4.2.3 Mapping URLs To GraphQL Queries..35

4.2.4 GraphQL Snippets...36

4.3 Working With Twig and Patternlab...38

4.3.1 Patternlab Conventions... 40

4.3.2 Standard Template Structure.. 41

4.4 Managing Multiple Publications.. 43

4.4.1 Shared Templates and Styles... 44

4.5 Extending CUE Front... 46

4.6 CUE Front Development Environment... 48

5 Writing Waiter Extensions... 49

5.1 The WaiterExtension Class.. 49

5.2 Registering Hooks.. 49

5.3 Callback Function Return Values...50

5.4 The Extension Hooks... 50

5.5 Registering Extensions... 51

5.6 Example Extension...51

6 Using the Fridge.. 53

6.1 Fridge as Cook Proxy.. 53

6.2 Fridge as Content Store Proxy...54

6.3 Using the Fridge as a Cache... 54

6.3.1 Fridge Stocker SSE Configuration.. 55

6.3.2 Changing the Change Log Daemon version...55

6.3.3 Controlling Which Changes Get Pushed to The Fridge.. 55

6.3.4 Ensuring Plug-in Data is Handled... 56

7 Using Data Sources...58

7.1 Creating a Data Source..59

7.1.1 Data Source Context...61

7.1.2 Using Filter Aliases... 62

7.2 Using a Data Source..62

7.2.1 The extendedDatasource Function... 64

7.2.2 Datasource Function Parameters..64

7.2.3 Changing The Data Source Context... 66

7.3 Data Source Reference..66

7.3.1 Query... 67

7.3.2 And.. 67

7.3.3 Or...68

7.3.4 Not... 68

7.3.5 Publication... 68

7.3.6 Section...68

7.3.7 Author.. 69

7.3.8 Type...70

7.3.9 Tag...70

7.3.10 Shared Tags..70

7.3.11 Field... 71

7.3.12 Related.. 71

7.3.13 WithRelationToMe... 73

7.3.14 WithRelationTo.. 73

8 Working with the Recipe... 75

8.1 Configuring Recipe Extensions.. 76

8.1.1 Configuring Image Content Types.. 76

8.1.2 Configuring Story Element Types... 77

8.1.3 Configuring URL-GraphQL query mappings... 78

8.2 Making a Recipe Extension..79

8.2.1 The Recipe Object.. 81

8.2.2 The Context Object... 81

8.2.3 Extension Configuration.. 82

8.3 Recipe Extension Tutorial.. 83

8.3.1 Creating the Recipe Extension..83

8.3.2 Configuring Docker..84

8.3.3 Configuring the Cook.. 84

8.3.4 Testing and Debugging... 85

8.3.5 Restricting the Extension's Scope...85

8.3.6 Parsing the URL..86

8.3.7 Passing on the Request..87

8.3.8 Setting GraphQL Parameters..88

8.3.9 Providing an Alternate GraphQL Query.. 90

8.3.10 Parsing Request Parameters.. 91

8.4 Upgrading Recipe Extensions.. 92

8.4.1 Upgrading with CUE Front.. 93

8.4.2 Upgrading Between CUE Front Releases...93

8.5 Customizing the Cook Response...94

8.6 Reference Documentation.. 95

9 ESI Support... 96

10 Cache Configuration.. 97

10.1 Configuring the Cook's Built-in Cache..97

10.1.1 Layout-sensitive caching... 99

10.2 Caching Cook Responses..100

10.2.1 Cook Response Link Headers.. 100

10.2.2 Caching Dynamic Responses... 101

10.2.3 Accessing External Back Ends... 105

10.3 Capabilities... 105

10.3.1 Enabling Capabilities... 105

10.3.2 Using Capabilities..106

10.3.3 Configuration Details... 109

11 Diagnostics and Monitoring... 112

11.1 Cook Diagnostic Resources... 112

11.2 Monitoring Log Messages.. 113

12 More About Cleaver...115

12.1 Cloud-based Image Caching.. 115

12.1.1 S3 Cache Configuration.. 115

12.2 Image Filters...117

12.2.1 Filter Configuration.. 118

12.3 Multi-threading.. 119

12.4 Exposing a Public Cleaver Endpoint.. 121

12.4.1 Content Store Configuration Changes.. 121

12.4.2 Cook Configuration Changes.. 122

12.4.3 Cleaver Configuration Changes.. 123

12.4.4 Fridge Configuration Changes.. 123

12.4.5 GraphQL Features...124

12.5 Error Logging..124

13 The Setup Tool..126

13.1 Initializing Setup..126

13.2 Creating a New Configuration.. 127

13.3 Regenerating a Configuration...128

13.4 Switching Configurations.. 128

13.5 Modifying a Configuration...128

13.6 Overriding Setup Defaults.. 129

13.7 Multi-publication Support.. 131

13.7.1 Copy Setup Defaults... 131

13.7.2 Add multiple publication settings...131

13.7.3 Remove publication prompt definitions... 132

13.7.4 Generate a new configuration... 132

13.7.5 Reconfigure nginx..133

13.7.6 Restart the Waiter... 134

13.8 Using Environment Variables in Configuration Files.. 134

14 Advanced Setup.. 136

15 Setting up Tomorrow Sport... 138

15.1 Create Tomorrow Sport..138

15.2 Cross-Publishing from Tomorrow Sport... 139

16 Publication Extensions...141

16.1 Publication Extension Structure..141

16.2 Applying a Publication Extension... 142

CUE Front Developer Guide

1 Introduction

CUE Front is a collection of web services that together serve content to client applications such as
browsers and native mobile/tablet apps. The main CUE Front web services are:

Cook
A back-end service that retrieves content from the Content Store and serves the content to
clients as JSON data via an HTTP-based content API.

Cleaver
A back-end service that retrieves, crops and resizes images for the Cook.

Waiter
A front-end service that responds to requests from browsers and other HTTP clients. The
Waiter passes on incoming requests to the Cook and is responsible for rendering the JSON data
returned by the Cook as HTML.

Fridge
An optional caching service that can be used in several different ways together with the other
CUE Front components.

The CUE Front services (or microservices) are not embedded in the Content Store. They are free-
standing entities that only communicate with the Content Store and each other via HTTP. Although
they will often be installed together on a single machine, they can, if required, be run on different
machines in different locations, or in the cloud.

The CUE Front services are designed to be installed in Docker containers, and the CUE Front start
pack contains all the configuration files and setup tools required to construct a working installation.

The following diagram shows how HTTP requests and responses flow between the Waiter, the Cook,
and the Cleaver:

Both the Cook and the Cleaver satisfy incoming requests by sending requests either to the Content
Store's REST API or to a Fridge caching layer.

CUE Front is intended to serve as a more modern replacement for the Content Store's existing built-in
presentation layer. It offers a number of advantages over the old presentation layer, including:

• Technology independence: The old presentation layer required the use of Java Server Pages
(JSP) to build web pages. The Cook's content API, on the other hand, supplies page content as
language-neutral JSON data, freeing you to use whatever language and technology you prefer for
your front-end component. The Waiter that we supply with CUE Front is written in PHP, but use
of this component is entirely optional. You can replace it with software written in any language you
like. And in the case of mobile/tablet apps, you can dispense with a Waiter altogether, and serve
JSON content directly to the app.

• Scalability: Scaling web sites built with the old presentation layer involved installing multiple
instances of the entire Content Store, and required complicated caching strategies to avoid
overloading the database. The CUE Front components are completely decoupled from the Content
Store and can be scaled separately. A complete copy of all the content in the Content Store's
database can be stored in one or more Fridges and all the other CUE Front components configured

Copyright © 2017-2023 Stibo DX A/S Page 7

CUE Front Developer Guide

to get their content from a Fridge rather than directly from the Content Store. Fridge contents are
kept up-to-date by pushing changes from the Content Store when they occur. This means that you
only need enough Content Store instances to support your editorial operation, and web site scaling
is a completely separate issue.

• Upgradeability: CUE Front is designed to support blue/green deployment for frequent upgrades
to the published web site. Since CUE Front is completely decoupled from the Content Store, such
deployments have no effect on the back end. Conversely, upgrading the Content Store has no
effect on the front end, if all web site content is being served from a Fridge. It is possible to take all
Content Store instances offline simultaneously without affecting published sites in any way (other
than the lack of updates to the content).

Breaking the presentation layer into separate services encourages separation of concerns: front-end
developers/designers can work exclusively with the Waiter (or some other front-end service), and do
not need to know anything about Cook or Cleaver. Similarly, back-end developers can concentrate on
ensuring that the Cook delivers the required content to the front end, and need not concern themselves
with how it is presented.

1.1 CUE Front for Designers
This section assumes that you use the Waiter supplied with CUE Front to render your web pages.
This may well not be the case, since one of CUE Front's main objectives is to give customers
the freedom to choose their own front-end technologies. The Cook serves web page content as
language- and technology-independent JSON data that can easily be consumed by any front-end
component — both server-based web applications and client-side applications such as mobile
native apps.

If you are a designer or pure front-end developer, then you will only work with the Waiter and an
accompanying design tool called Patternlab. The Waiter is a PHP application that uses the Twig
templating engine to serve HTML pages. When the Waiter receives a request from a client, it simply
forwards the request to the Cook. The Cook returns a JSON response. The Waiter then merges the
returned JSON data with the appropriate Twig template and returns the result to the client.

As a designer, therefore, your responsibilities are to create a set of Twig templates and other design
assets that generate pages from the JSON data supplied by the Cook. The supplied JSON data is your
interface with the back-end developer: if it is insufficient, or badly suited to the production of the
required pages, then it is up to the back-end developer to modify the data supplied by the Cook.

The Waiter supports styleguide-driven development – specifically, atomic design. A living style
guide called Patternlab is delivered with the Waiter. Patternlab is a web application that supports
atomic design by presenting all of a web site's atomic design components in a browseable catalog.
Using Patternlab, you can see what pages (and all the individual design components from which
the pages are built) look like on different devices. Patternlab does this by merging the design's Twig
templates with static JSON data fragments. This means that you can use Patternlab to work "off-line"
on a web site design — that is, without any access to the Cook or the Content Store.

Copyright © 2017-2023 Stibo DX A/S Page 8

http://patternlab.io/
http://twig.sensiolabs.org/
http://bradfrost.com/blog/post/atomic-web-design/
http://patternlab.io/

CUE Front Developer Guide

1.1.1 What is Patternlab?

Patternlab is a PHP web application for web designers that supports atomic design. Atomic design
breaks web page designs down into re-usable components called atoms, molecules and organisms,
and in this way helps designers to work more consistently and efficiently. Patternlab is basically a
browser for these components: you can use it to browse the individual components and see what they
look like, and also simultaneously examine the template source code that produces them.

1.1.2 What is Twig?

Twig is a popular templating engine for PHP, and is fully supported by Patternlab.io.

1.2 CUE Front for Developers
If you are a back-end developer, then you will mainly be interested in the Cook. The Cook is a node.js
application that supplies the content requested by the Waiter and/or other front-end components.
The Waiter forwards each page request made by a client directly to the Cook. The Cook is responsible
for assembling a response that contains all the content that the Waiter will need to render the
page. Retrieving content requires the Cook to make multiple requests to the Content Store, but this
complexity is hidden from the Waiter.

When the Cook receives a request from the Waiter, it:

1. Sends the request URL to a Content Store web service called resolver. The resolver converts
this external "pretty" URL to an internal web service URL

2. Sends a request to the returned web service URL. The Content Store web service returns data in
the form of Atom XML resources. In order to obtain all the information needed to respond to the
Waiter's request, the Cook will usually need to follow links embedded in the returned Atom data,
and send several requests to the web service.

3. Assembles the information returned from the Content Store into a JSON structure.

4. Returns the JSON structure to the Waiter.

In order to be able to perform these steps, the Cook needs to know what data the client will need to be
able to render the requested page. A content item can have many different fields - which ones is the
Waiter actually going to render on the page? A content item can be related to many other content items
in a variety of ways - which ones are to be included or linked to on this page, and, which of their fields
is required? This information is provided in a recipe. A recipe defines:

• The information the Waiter needs to render specific page types

• How the Waiter would like the information for each page type to be organized (that is, the required
JSON structure)

Your main responsibility as a developer, therefore, is the creation of a recipe that correctly defines the
information to be supplied to the Waiter.

1.2.1 What is a Recipe?

Copyright © 2017-2023 Stibo DX A/S Page 9

http://patternlab.io/
http://bradfrost.com/blog/post/atomic-web-design/
http://twig.sensiolabs.org/

CUE Front Developer Guide

A recipe is a Javascript code module used by the Cook to enable it to retrieve information from the
Content Store and/or other sources, and make it available in a useful form to the Waiter. It consists of:

• recipe.js, a small controller for the recipe. Most of the actual recipe functionality is provided by
NPM extension modules imported by recipe.js. In the delivered system, these extensions are all
downloaded from Stibo DX's NPM repository, npm.escenic.com, but you can extend the recipe
by creating your own extensions.

• A set of application-specific GraphQL queries that specify for each type of page on the site:

• The content to be supplied to the Waiter

• How the content supplied to the Waiter is to be organized and named

The recipe also requires access to a publication-specific GraphQL schema in order to provide
a context for the GraphQL queries. The GraphQL schema consists of a set of publication-specific
Javascript files that are called by the recipe, enabling the Cook to navigate the publication structure
and retrieve data from it.

CUE Front includes a script called update-schema.sh that can automatically generate the GraphQL
schema files for any CUE publication (see section 4.1). This means that creating a recipe for a new
publication or family of related publications is in many cases just a matter of creating a set of suitable
GraphQL queries.

In some cases it may not be possible to produce the required output using GraphQL alone. Possible
reasons for this include:

• The Waiter requires the output JSON data to be organized in a different way than the default
output (which reflects the Content Store's internal structure). GraphQL allows simple modifications
to the output structure, such as omitting elements and renaming, but not complex reorganization.

• The Waiter requires data from sources other than the Content Store to be incorporated into the
structure, such as data from an external sports results service, or stock market data.

In such cases the default recipe supplied with the CUE Front start pack can be extended by writing an
extension of your own. For more about this, see section 8.2.

1.2.2 What is GraphQL?

GraphQL is a query language that supports the definition of complex queries – sufficiently complex
that a single query can be used to retrieve all the content needed to render the front page of a typical
CUE publication. The result of a GraphQL query is a JSON data structure that can be passed to a
templating system for rendering as HTML.

GraphQL queries are very specific about what is to be retrieved: only those items of data that are
specifically requested are retrieved. This means that a GraphQL query tends to look very similar to the
result it produces – it has the same "shape":

The Cook includes GraphiQL, a browser-based GraphQL interface that lets you interactively explore a
dataset (in this case, your publication) by editing a GraphQL query and seeing the results in real time.
The query and the results it produces are displayed side-by-side in the browser.

For more about this, see section 4.2.

Copyright © 2017-2023 Stibo DX A/S Page 10

http://graphql.org/
http://graphql.org/
https://medium.com/the-graphqlhub/graphiql-graphql-s-killer-app-9896242b2125#.rr6d4bmjy

CUE Front Developer Guide

1.2.3 What Does the Cleaver Do?

The Cleaver is an auxiliary service that handles images for the Cook. Images in CUE publications can
include crop information that specifies what aspect ratio the image should have, and what part of the
base image should actually be rendered in the specified location. When the Cook receives a request
for an image from the Waiter, it forwards the request to the Cleaver, appending the required crop
information as URL parameters. The Cleaver then retrieves the base image from the Content Store,
carries out any required crop operations and returns the cropped image to the Cook. The Cook then
serves this image to the Waiter. The Cleaver maintains a cache for the images it downloads from the
Content Store in order to avoid unnecessary network traffic.

This whole process is automatic and requires no intervention. Once the Cook and Cleaver are correctly
configured, the Cleaver can be regarded as a "black box".

1.3 The CUE Front Start Pack

The CUE Front start pack is a downloadable package that contains the infrastructure needed to get
a CUE Front installation up and running - mostly consisting of Shell scripts and Make files, plus the
Docker files needed to define the Docker containers in which the CUE Front services run. The start
pack also contains:

• CUE Front's default Waiter (a PHP front end for serving publications)

• Patternlab, the style guide application supplied with CUE Front

• A setup tool for installing and configuring the CUE Front services

cue-front-start-pack is made available as a tarball that you can download from the Stibo
DX Maven repository and modify to suit your requirements. The Maven repository also contains
publication packs – tarballs containing sample publications that you can use together with the CUE
Front start pack for various purposes. A publication pack contains:

• Publication resources (content-type, layout-group and layout files) for uploading to the
Content Store, plus possibly one or more files containing demo content.

• A corresponding set of Twig templates, SASS files and other design assets for rendering content
retrieved from the defined publication

• A recipe and set of GraphQL queries for retrieving page content from the Content Store

The currently available publication packs are:

tomorrow-online
This pack contains the Content Store demo publication, Tomorrow Online. This publication
is used as the basis for all examples and discussion in this manual.

starter-publication
This pack contains a minimal publication that you can use as the starting point for your own
projects.

Copyright © 2017-2023 Stibo DX A/S Page 11

CUE Front Developer Guide

2 Getting Started

How much you need to do to get started with CUE Front depends on what you're going to do with it,
and whether or not you have access to any existing CUE Front components. The following sections
contain two "quick start" guides for Docker-based installations: one for a full-stack test/development
installation and a simpler guide for designers who will be accessing an existing Cook installation.

Quick start for test/development
This is the quickest way to install a complete CUE Front stack. All the components are installed
in Docker containers and are pre-configured to work together correctly. It's the recommended
starting point, since it gives you a complete, correctly configured system to explore and play
around with. It also means you can install CUE Front on Mac and Windows machines, not
only on Linux. Note, however, that some organizations have IT policies that disallow the use
of virtualization technology on Windows machines, in which case you will not be able to install
CUE Front in this way.

Quick start for designers
If you are a designer or front-end designer working in an organization with an existing CUE
Front installation, then you probably don't need to run all the CUE Front components on your
computer. You will probably only want to use the Waiter and Patternlab.io, and connect the
Waiter to an existing Cook installation. This guide tells you how to install and configure your
Docker containers for this kind of usage.

This section does not discuss installation or configuration of the Fridge, since the Fridge is an
optional component that is not needed in the "getting started" phase. The Fridge is actually an nginx
web server instance used to maintain a cache, and can be used for two different purposes:

• Offline template development

• Caching in production systems

For information about the Fridge's different uses and how to install and configure it, see chapter 6.

2.1 Quick Start for Test/Development
The general procedure is:

1. Install Docker on your machine – see section 2.1.1

2. Optionally download and unpack a sample publication, or check out an existing publication from
your own repositories – see section 2.1.2

3. Download the CUE Front start pack and unpack it – see section 2.1.3

4. Install the CUE Front components in Docker containers – see section 2.1.4

5. Run the Docker containers – see section 2.1.5

2.1.1 Installing Docker

The installation method for Docker is platform-dependent.

Copyright © 2017-2023 Stibo DX A/S Page 12

https://www.docker.com/

CUE Front Developer Guide

2.1.1.1 Installing Docker on Ubuntu

These instructions are based on the use of Ubuntu 18.04 LTS.

Before you start, make sure that your Ubuntu installation includes the zip command. If it doesn't,
install it as follows:

sudo apt-get update
sudo apt-get install zip

You need to install both docker itself and an additional tool called docker-compose. There are
docker.io and docker-engine packages in the Ubuntu repositories, but they contain old versions
and must not be used. Instead, follow the instructions given on the following pages:

• Installing Docker CE on Ubuntu

• Installing docker-compose (make sure you select the Linux tab on this page)

You can now continue by following the instructions in section 2.1.3.

2.1.1.2 Installing Docker on Windows

The recommended Docker installation for Windows is Docker for Windows. This version of Docker,
however, can only be installed on Windows 10 Pro or Windows 10 Enterprise Edition. If you have an
earlier version of Windows, you can install Docker Toolbox instead. Docker Toolbox can be installed
on any 64-bit version of Windows 7, 8 or 10.

Both products work by running the Docker containers in a lightweight Linux system which itself runs
inside a virtual machine. The main difference between the two products is that Docker for Windows
uses Microsoft's Hyper-V to host the Linux virtual machine, while Docker Toolbox uses VirtualBox.

VirtualBox and Hyper-V cannot co-exist on the same machine, so if you need VirtualBox for other
purposes, then you should use Docker Toolbox even on Windows 10.

2.1.1.2.1 Docker for Windows (Windows 10 Pro or better)

The following procedure describes how to install Docker for Windows and set up your system for
working with CUE Front. The procedure also involves installing Windows Subsystem for Linux.
This gives you access to an Ubuntu shell environment inside Windows that you can use for installing,
configuring and controlling CUE Front.

1. Enable Hyper-V as described here.

2. Install Windows System for Linux as described here. Choose the Ubuntu Linux distribution.

3. Install Docker for Windows.

Copyright © 2017-2023 Stibo DX A/S Page 13

https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/compose/install/#install-compose
https://store.docker.com/editions/community/docker-ce-desktop-windows
https://docs.docker.com/toolbox/overview/
https://blogs.technet.microsoft.com/canitpro/2015/09/08/step-by-step-enabling-hyper-v-for-use-on-windows-10/
https://docs.microsoft.com/en-us/windows/wsl/install-win10

CUE Front Developer Guide

4. After installing, select Expose daemon on tcp://localhost:2375 without TLS in the Docker
general settings:

This is necessary to ensure that Docker is accessible from Windows Subsystem for Linux.

5. Open a Powershell window.

6. Continue as described in section 2.1.3.

2.1.1.2.2 Docker Toolbox (Earlier Versions)

The following procedure describes how to install Docker Toolbox:

1. Download and install Docker Toolbox. The Docker Toolbox package includes VirtualBox, so you
don't need to install it separately.

2. Double-click the Docker Quickstart Terminal icon installed on your desktop. This opens a
terminal window from which you can install, start and stop Docker containers. This window is
actually running a bash shell (the default command shell used in Linux), which means that from
this point on, installation is very similar to installation on Ubuntu.

3. At the top of the Docker Quickstart Terminal is a line something like this, telling you the IP
address of the virtual machine that the Docker containers will run in:

docker is configured to use the default machine with IP 192.168.99.100

Copy or make a note of the IP address, as you will need it later (see next step).

4. Continue as described in section 2.1.3. Everywhere the instructions tell you to use a URL
containing localhost, specify the IP address of your Docker virtual machine instead of
localhost.

If you enter this command in the Docker Quickstart Terminal:

pwd

You will see the full Windows path of Docker's "home folder". This is useful to know so that you can
find the folder in Windows Explorer, if necessary.

Copyright © 2017-2023 Stibo DX A/S Page 14

CUE Front Developer Guide

2.1.1.3 Installing Docker on Mac

Download and install Docker for Mac as described here. Open a command terminal and continue as
described in section 2.1.3.

2.1.2 Getting a Publication Pack

If you are starting completely from scratch, you are going to need a publication to work with. Stibo DX
provides two different starting points that you can download:

• tomorrow-online, which contains the CUE Content Store demo publication, "Tomorrow Online".
We recommend that you download this publication if you are trying out CUE Front for the first
time, as it includes some content, with useful examples of how to do various things.

• starter-publication, a simple publication that you can use as a starting point for your own
publications.

If your organization is already using CUE Front, then there will probably be an existing publication
that you can work with, in which case you may like to skip this step, and instead check out that
publication from your repositories.

The following commands will unpack the Tomorrow Online publication in your home folder:

cd
curl -O https://user:password@maven.escenic.com/com/escenic/cook/tomorrow-
online/1.22.2-3/tomorrow-online-1.22.2-3.tar.gz
tar -xzvf tomorrow-online-1.22.2-3.tar.gz
rm tomorrow-online-1.22.2-3.tar.gz
ln -s tomorrow-online-1.22.2-3 tomorrow-online
cd tomorrow-online

where username and password are your Stibo DX credentials. If you don't have a username and
password, please contact Stibo DX support.

If you want to install the starter publication rather than Tomorrow Online, replace every occurrence
of tomorrow-online in the above commands with starter-publication.

If you are installing on a Mac, make sure you unpack the publication either in your home folder
or in one of its subfolders. Otherwise you may have problems later syncing the templates folder
(because it cannot be mounted by the containers).

2.1.2.1 Making a git Repository

If you intend to make changes to the downloaded publication (even if you're only doing so as a learning
exercise), then we recommend that you commit the publication folder to a source control repository
now before you have made any changes, and tag it. This will ensure you have a full record of everything
you do, and can easily retrace your steps if necessary. You can create a git repository for your project
and tag the starting point with the following commands:

git init
git add .
git commit -m "Starting the CUE Front journey"
git tag baseline

for more about this, and the development process in general, see section 4.6.

Copyright © 2017-2023 Stibo DX A/S Page 15

https://docs.docker.com/docker-for-mac/

CUE Front Developer Guide

2.1.2.2 Uploading the Publication

If the downloaded publication is not already installed at your site, and you don't have access to a copy
running anywhere else, then you will need to upload it to your Content Store.

Create the publication by entering the following command:

make dist -C publication

You will then find two versions of the publication in the tomorrow-online/publication/dist
folder:

tomorrow-online.zip
tomorrow-online-with-content.zip (we recommend that you use this one, which includes
 some content)

(You will also see a file called tomorrow-sport-with-content.zip. Please ignore this file for
now.)

Upload the publication to your Content Store in the usual way. If you don't know how to do this, you
will find instructions here. Note that:

• You only need to follow steps 1 - 7, the remaining steps are not required.

• In step 6, make a note of the publication name and administrator password you select, as you may
want to enter them again when installing CUE Front.

• Don't worry that the instructions specify the use of a .war file – the supplied .zip file will work.

2.1.3 Getting the CUE Front start pack

Download and unpack the CUE Front start pack. The following commands will unpack it in your home
folder:

cd
curl -O https://user:password@maven.escenic.com/com/escenic/cook/cue-front-start-
pack/1.22.2-3/cue-front-start-pack-1.22.2-3.tar.gz
tar -xzvf cue-front-start-pack-1.22.2-3.tar.gz
rm cue-front-start-pack-1.22.2-3.tar.gz
ln -s cue-front-start-pack-1.22.2-3 cue-front
cd cue-front

where username and password are your Stibo DX credentials. If you don't have a username and
password, please contact Stibo DX support.

2.1.4 Installing the CUE Front Components

A setup tool is included with the CUE Front start pack. It displays a series of prompts asking what
components you want to install, and some details about how you want to install them. From your
responses it generates the configuration files needed by each component, downloads the components
from the CUE Front SW repository and builds the Docker containers needed to run them.

To install a full set of CUE Front components using the setup tool:

1. Make sure you are in the cue-front/setup folder:

cd path/cue-front/setup

Copyright © 2017-2023 Stibo DX A/S Page 16

http://docs.escenic.com/ece-install-guide/7.1/create_a_publication.html

CUE Front Developer Guide

2. Build the setup container by entering:

docker-compose build

3. Initialize the setup tool by entering:

docker-compose run setup login username

where username is the name of your account for downloading software from Stibo DX's
repositories. You will be prompted to enter a password.

4. Open path/cue-front/setup/.env in a text editor, and add the following line:

location=publication-path

where publication-path is the path of the folder containing the publication you downloaded. For
example:

location=~/tomorrow-online-1.22.2-3

On Windows, publication-path must be specified using Windows syntax (that is, using \
rather than /).

5. Optionally add the following line to path/cue-front/setup/.env:

NODE_VERSION=version

where version is the version of node.js you want CUE Front to use, specified in the format
major.x (12.x, for example, which will give you the latest update of version 12). The node.js
version you specify will be used in all the Docker containers created by CUE Front. If you do not
specify a version, then CUE Front will use its current default version.

6. To run the setup tool, enter:

docker-compose run setup add configuration-set

where configuration-set is just a name for the configuration you are going to create — myconfig,
for example. The setup tool displays a series of prompts in the terminal window. The first two
prompts are:

Enabled services
Press Up Arrow a few times and then press Space to select all. Then press Enter to
move on.

Configuration
You want Quick, which is the default choice, so just press Enter.

Which Host OS is in use?
Press Space to select your operating system and then press Enter.

Type of setup?
Press Space to select the required setup type and then press Enter. If you select
development, then changes made to the recipe, schema, GraphQL queries, and data
sources while the Cook is running take immediate effect; if you select production, then

Copyright © 2017-2023 Stibo DX A/S Page 17

CUE Front Developer Guide

they won't take effect unless the Cook is restarted. For most purposes you should select
development.

The remaining prompts require you to either enter a value or just press Enter to use the default.
You can accept the defaults in most cases.

[fridge] Which port (nnnn) or port range (nnnn-nnnn) should be exposed on the
host?

The port number the Fridge will listen to.If you enter a range of port numbers then several
Fridges will be started, one listening on each port number.

[cook] Which port (nnnn) or port range (nnnn-nnnn) should be exposed on the
host?

The port number(s) the Cook will listen to.If you enter a range of port numbers then
several Cooks will be started, one listening on each port number.

[cook] Escenic Content Store hostname
The host name or IP address to which the Cook will send web service requests. Note that
even if you are installing CUE Front on the same machine as Content Store, you must not
specify localhost (or 127.0.0.1) here: specify your machine's public IP address.

[cook] Access credentials username
The CUE username the Cook is to use when accessing the Content Store. For demo/test
purposes it is most convenient to use the publication's admin username, which is always
publication-name_admin. For example, If you called the publication tomorrow-online
when you uploaded it to the Content Store (see section 2.1.2.2), then the admin username
is tomorrow-online_admin.

Using the admin user for CUE Front is not a good idea for production systems. In
a production system you should create a special user for CUE Front that has read-
only access to all your publication's sections and content types. If you want to be

Copyright © 2017-2023 Stibo DX A/S Page 18

CUE Front Developer Guide

able to support cross-publishing, then this user must also have read access to all the
publications from which content might be selected.

[cook] Access credentials password
The password for the user you have specified above.

[cook] Use the fridge?
If you want the Cook to use the Fridge as a proxy, set this to true.

[waiter] cookBaseURL
The Cook domain name and port number to which the Waiter will forward incoming
requests.

[waiter] Which port (nnnn) or port range (nnnn-nnnn) should be exposed on the
host?

The port number(s) the Waiter will listen to. If you enter a range of port numbers then
several Waiters will be started, one listening on each port number.

[waiter] Publication name
The name of the CUE publication you want to publish using CUE Front (Tomorrow Online
in this case). This is the name you specified when uploading Tomorrow Online to the
Content Store (see section 2.1.2.2).

[waiter] Publication host name
The host name the publication will be published on.

[waiter] Use the fridge?
If you want the Waiter to use the Fridge as a proxy, set this to true.

[matomo-db] Database host root password
The root password for the Matomo database's host machine. Make a note of this value as
you will need to use it later.

[matomo-db] Database user name
The user name for the Matomo database. Make a note of this value as you will need to use
it later.

[matomo-db] Database user password
The user password for the Matomo database. Make a note of this value as you will need to
use it later.

7. Once you have answered all the prompts, the setup tool verifies your responses, generates a set
of configuration files, checks for errors, and if all is OK downloads the requested components
and builds Docker containers for them. When it is finished, you will see that it has created a
folder for the configuration inside the setup folder (setup/myconfig, for example). Go to this
configuration folder:

cd ../myconfig

8. If your Content Store is running in a virtual machine on your PC and is accessed via a host name
specified in your PC's hosts file, then you need to open the file docker-compose.yml in the
setup/myconfig folder and add an extra_hosts property to both the Cook and Cleaver
sections of the file. The extra_hosts properties let you provide the Cook and Cleaver containers
with a host name mapping for the Content Store, since they do not have access to your PC's

Copyright © 2017-2023 Stibo DX A/S Page 19

CUE Front Developer Guide

hosts file. So if you have the following entry in your hosts file to set up a host name for your
Content Store VM:

192.168.56.101 engine.local

Then you would need to add the following lines (highlighted in bold) to your docker-
compose.yml file:

services:
 cleaver:
 ... (lines omitted) ...
 extra_hosts:
 - "engine.local:192.168.56.101"

 cook:
 ... (lines omitted) ...
 extra_hosts:
 - "engine.local:192.168.56.101"

9. To build the Docker containers for the CUE Front components, enter:

docker-compose build

CUE Front is now installed and almost ready to run based on the configuration you created. If you
want to make configuration changes later, you can edit the configuration using the setup edit
command, or create a different configuration set with a different name. The setup tool has an advanced
mode which allows you to configure the components in more detail. For more information about all
these options, see chapter 13.

At present, the setup tool is unable to automatically configure the Matomo installation used to
provide web analytics functionality for CUE Front publications. This means that after starting CUE
Front for the first time you should configure the Matomo installation as described in section 2.1.7.
Until you have done this, Tomorrow Online will not contain any "most read" links.

2.1.5 Starting CUE Front

To start CUE Front, make sure you are in the myconfig folder, and enter:

docker-compose up -d

A sequence of output messages is displayed as the various Docker containers are created and the CUE
Front services are started:

Creating network "cuefrontstartpack12019_default" with the default driver
Creating cuefrontstartpack12019_fridge_1 ...
Creating cuefrontstartpack12019_cleaver_1 ...
Creating cuefrontstartpack12019_rsync_1 ...
Creating cuefrontstartpack12019_cleaver_1
Creating cuefrontstartpack12019_fridge_1
Creating cuefrontstartpack12019_fridge_1 ... done
Creating cuefrontstartpack12019_cook_1 ...
Creating cuefrontstartpack12019_rsync_1 ... done
Creating cuefrontstartpack12019_browsersync_1 ...
Creating cuefrontstartpack12019_styles_1 ...
Creating cuefrontstartpack12019_styles_1
Creating cuefrontstartpack12019_styles_1 ... done
Creating cuefrontstartpack12019_styleguide_1 ...
Creating cuefrontstartpack12019_waiter_1 ...
Creating cuefrontstartpack12019_styleguide_1

Copyright © 2017-2023 Stibo DX A/S Page 20

CUE Front Developer Guide

Creating cuefrontstartpack12019_waiter_1 ... done
Creating cuefrontstartpack12019_loadBalancer_1 ...
Creating cuefrontstartpack12019_styleguide_1 ... done

If you get problems at this point, the most likely reason is that you entered the docker-compose
up command in the wrong folder. You must be in the cue-front root folder when you enter any
docker-compose command (the folder that contains the docker-compose.yml file). docker-
compose will output an error message explaining the problem.

Assuming all went well, start a browser — you should be able to find the services listed below:

The demo publication
At http://localhost:8100/ you should find the front page of the demo publication.

The Cook
At http://localhost:8101/ you should find the Cook. All you will see at this address is:

{
 error: "Failed to resolve context: /"
}

If, however, you add the name of the demo publication (plus a final slash) to the URL –
http://localhost:8101/tomorrow-online/ - then you will see the JSON data from
which Waiter generates the front page:

{
 data: {
 resolution: {
 context: "sec",
 remainingPath: "",
 publication: {
 name: "tomorrow-online",
 features_raw: "",
 features: []
 },
 section: {
 name: "Home",
 uniqueName: "ece_frontpage",
 href: "http://vagrant:8080/tomorrow-online/",
 parameters: []
 }
 },
 headerMenu: [
...etc...

If you add edit to this URL (that is, if you enter http://localhost:8101/tomorrow-
online/edit), then you will see the GraphQL query that is used to retrieve the page from the
Cook displayed in the Cook's GraphiQL interface. For more about this, see section 4.2.

The Cleaver
At http://localhost:8102/ you should find the Cleaver. All you will see is:

Cleaver is running...

Patternlab
At http://localhost:8103/ you should find the Patternlab style guide. You can use this
to explore all the design components from which the demo publication is built. For more about
this, see section 4.3.

Copyright © 2017-2023 Stibo DX A/S Page 21

CUE Front Developer Guide

Matomo
At http://localhost:8106/ you should find the Matomo administration interface. You can
use this to complete the configuration of the Matomo web analytics platform. For more about
this, see section 2.1.7.

2.1.6 Managing the CUE Front Containers

To stop all the CUE Front services without closing the Docker containers in which they run, enter:

docker-compose stop

You will then see a series of messages as each Docker container is stopped:

Stopping cuefrontstartpack1208_waiter_1 ... done
Stopping cuefrontstartpack1208_cook_1 ... done
Stopping cuefrontstartpack1208_styleguide_1 ... done
Stopping cuefrontstartpack1208_styles_1 ... done
Stopping cuefrontstartpack1208_cleaver_1 ... done
Stopping cuefrontstartpack1208_rsync_1 ... done
Stopping cuefrontstartpack1208_fridge_1 ... done

You can then restart the CUE Front by entering:

docker-compose start

This time, CUE Front will start faster as the containers do not need to be created first.

To stop CUE Front and remove the containers, enter:

docker-compose down

To start CUE Front again now, you will need to enter:

docker-compose up -d

To restart one of the CUE Front services while CUE Front is running, enter:

docker-compose restart service-name

To restart the Waiter, for example, enter:

docker-compose restart waiter

If you want to examine what is going on inside one of the containers (explore the file system, for
example), you can start a Bash shell inside the container by entering:

docker-compose exec service-name bash

When you are finished doing what you want to do inside the container, you can return to your main
shell by entering exit or pressing Ctrl-d.

If you want to be able to see the log messages output by the CUE Front services, open a second
terminal window, cd to the cue-front folder and enter the following command after starting CUE
Front:

docker-compose logs -f

Copyright © 2017-2023 Stibo DX A/S Page 22

CUE Front Developer Guide

All log messages will then be displayed in this terminal. To stop the display, just press Ctrl-c.

This is not the recommended way of viewing log messages – see section 11.2 for a better way.

2.1.6.1 Fixing Docker Problems

Removing unwanted containers

You may find from time to time that you get problems when starting up. This is often due to the
existence of rogue Docker containers that should have been stopped but are still running. The
following error message, for example:

port is already allocated

probably means that a Docker container that should have been closed is still running, and occupying a
port you want to use.

The following commands are useful for solving these kinds of issues:

$ docker ps -a

This lists any Docker containers that are currently running. If you aren't currently running CUE Front,
and don't have any other Docker-based software running on your computer, it should not return
anything. If it does return a list of container IDs, you probably want to terminate them, which you can
do as follows:

$ docker rm -fv container-id

If you want to delete all the listed containers, you can do it like this:

$ docker rm -fv $(docker ps -aq)

Don't do this unless you are sure you want to delete all the containers on your
machine. There might be other software besides CUE Front running in Docker containers, and
this command will remove them too.

Removing unwanted images

You may also find after a while that Docker is filling up your disk due to unused Docker images.

To list all Docker images, enter:

$ docker images

To delete an unwanted image, enter:

$ docker rmi image-id

To delete all your Docker images, enter:

$ docker rmi $(docker images -q)

Don't do this unless you are sure you want to delete all the Docker images on your
machine. There might be other software besides CUE Front running in Docker containers, and
this command will remove them too. Even if CUE Front is the only Docker-based software running

Copyright © 2017-2023 Stibo DX A/S Page 23

CUE Front Developer Guide

on your machine, you may not want to delete all images. It means that restarting CUE Front will
take a long time, as all the containers have to be recreated and provisioned with software.

2.1.7 Analytics Configuration

CUE Front includes an analytics extension based on Matomo, a popular open source web analytics
platform. Matomo runs in its own container (the analytics container) and stores its analytics data in
a MariaDB database that runs in another container called matomo-db.

For technical reasons, the setup tool is not currently able to automatically configure the Matomo
installation running in the analytics container. Therefore, you must do it yourself. Matomo
incorporates an easy-to-use web administration interface, so this is quite easy to do. Once you have
started CUE Front as described in section 2.1.5, you can access the Matomo administration interface by
starting a browser and going to http://localhost:8106/.

You will find general instructions for how to configure Matomo here. Here is some additional
information you need to ensure that the Matomo installation will work correctly together with the
other CUE Front components:

• On the Database Setup page:

• Enter matomo-db in the Database Server field.

• Enter the same value in the Login field as you entered at the [matomo-db] Database user
name prompt in setup (this is root if you accepted the default).

• Enter the same value in the Password field as you entered at the [matomo-db] Database
password prompt in setup.

• Enter matomo in the Database Name field.

• On the Super User page you can enter any values you choose.

• On the Setup a Website page enter the details of one of your web sites. For the Tomorrow Online
demo website, you should enter http://tomorrow-online:8100/.

• For the Tomorrow Online website you can ignore the Javascript tracking code supplied at the end
of the configuration process, since it is already included in the Tomorrow Online templates. In
other cases, you need to make sure the code is included in your templates.

After completing the basic configuration, you must:

1. Find the administration interface's Manage Users page

2. Change the access of the anonymous user to View.

Once you have made these changes you should be able to see "most read" links in Tomorrow Online.

2.2 Quick Start for Designers
The general procedure is:

1. Install Docker on your machine as described previously in section 2.1.1

2. Download the CUE Front start pack and unpack it as described previously in section 2.1.3

3. Install the CUE Front components in Docker containers as described below in section 2.2.1.

Copyright © 2017-2023 Stibo DX A/S Page 24

https://matomo.org/
https://matomo.org/docs/installation

CUE Front Developer Guide

4. Run the Docker containers as described below in section 2.2.2

2.2.1 Installing for Designers

The basic installation procedure for designers is the same as the general Docker installation procedure
described in section 2.1.4. Step 5, however is different. When you get to this step you should answer
the setup tool's prompts as follows:

Enabled services
Instead of selecting all, you should select the following individual services: waiter, rsync,
styleguide and styles.

Configuration
Select Quick.

You can accept the defaults of all the remaining prompts, except for:

[waiter] Publication name
The name of the CUE publication you want to publish using CUE Front (Tomorrow Online in
this case).

[waiter] Cook base URL
The URL of the Cook you want to use (including port number and closing slash). For example,
http://cook.myserver.com:8101/.

2.2.2 Starting the CUE Front Design Tools

To start only the CUE Front components needed by designers, enter:

docker-compose up -d waiter styles styleguide rsync

A sequence of output messages is displayed as the various Docker containers are created and the CUE
Front services are started:

Creating cuefrontstartpack1208_rsync_1
Creating cuefrontstartpack1208_styles_1
Creating cuefrontstartpack1208_styleguide_1
Creating cuefrontstartpack1208_waiter_1

If you get problems at this point, the most likely reason is that you entered the docker-compose
up command in the wrong folder. You must be in the cue-front root folder when you enter any
docker-compose command (the folder that contains the docker-compose.yml file). docker-
compose will output an error message explaining the problem.

Assuming all went well, start a browser — you should be able to find the services listed below:

The demo publication
At http://localhost:8100/ you should find the front page of the demo publication.

Patternlab
At http://localhost:8103/ you should find the Patternlab style guide. You can use this
to explore all the design components from which the demo publication is built. For more about
this, see section 4.3.

See section 2.1.6 for information on how to stop the CUE Front services you have started.

Copyright © 2017-2023 Stibo DX A/S Page 25

CUE Front Developer Guide

3 Upgrading

New versions of the CUE Front start pack are released at regular intervals, usually together with
new versions of the CUE Content Store and CUE editor. Customers are recommended to follow
this upgrade cycle in order to ensure that they are running a recent version of the CUE Front
infrastructure.

You should be aware that CUE Front has three groups of components, each of which can be upgraded
independently of the other two. These groups are:

The start pack
This is the CUE Front infrastructure:

• Docker files that define the containers in which the various components run, download and
install the Cook, Cleaver and Fridge.

• The default Waiter code

• Patternlab, the setup tool and other CUE Front utilities

This component is upgraded by downloading a tarball from the Stibo DX Maven repo and
unpacking it. For further information, see section 3.1.

Cook and Cleaver
Whenever a new version of the CUE Front start pack is released, new versions of the Cook and
Cleaver are also released and made available on Stibo DX's Debian repo. An upgraded start
pack will not automatically download and install new versions of these components however.
The start pack's Docker files are configured to look for a version number in the appropriate
publication definition folder, and download the version specified there.

To upgrade the Cook and Cleaver versions used at your installation, therefore, you must edit the
cue.yaml file in the root folder of your publication definition. For more information about how
to do this, see section 3.1.1.

Recipe extensions
Upgrading the start pack does not affect your publication definition: your recipe, GraphQL
queries, templates and so on are not touched by the upgrade process in any way.

The default recipe extensions made by Stibo DX are published on the NPM server
npm.escenic.com. Each extension published on npm.escenic.com is separately maintained
and has its own version number. As corrections and improvements are made to an extension,
new versions may be published. This process is completely independent of the CUE Front
release cycle. You will only ever get a new version of a recipe extension if you explicitly request
it, and you can upgrade a recipe extension at any time.

Nevertheless, you may choose to upgrade recipe extensions in combination with a CUE Front
upgrade. For more information about how to do this, see section 8.4.

3.1 Upgrade Procedure
If you are upgrading from CUE Front version 1.4, then you cannot use this procedure to upgrade to
version 1.22.2-3. You will need to follow the procedure described here instead (and replacing the
version number 1.5.0-4 in the instructions with the number 1.22.2-3).

Copyright © 2017-2023 Stibo DX A/S Page 26

http://docs.escenic.com/cue-front-developer-guide/1.5/upgrading_from_1_4_to_1_5.html

CUE Front Developer Guide

The basic upgrade procedure is:

1. Download the new start pack in a new location, as described in section 2.1.3.

2. Copy your config folders from the old installation to the new installation. For example:

cp old-installation/myconfig new-installation

3. Copy any other files that you have modified from the old installation to the new installation
(for example, the nginx.conf file in old-installation/service/waiter/docker and the
fridge.conf file in old-installation/service/fridge, if you have modified either of them).

4. Delete your old installation.

5. Rename your new installation to the same name as your old installation.

6. Upgrade Cook and Cleaver, if required. See section 3.1.1 for details.

7. Restart your CUE Front containers as described in section 2.1.6.

3.1.1 Upgrading Cook and Cleaver

If you are upgrading from CUE Front version 1.5 to version 1.22.2-3, then your publication root
folder will not contain a cue.yaml file as described below – you will need to create it.

To upgrade Cook and Cleaver:

1. Open publication-folder/cue.yaml in an editor:

versions:
 cue-front: "old-version"

2. Replace the old version number with the number of the version you want to upgrade to:

versions:
 cue-front: "1.22.2-3"

3. Save the file.

4. Go to your CUE Front installation's setup folder and regenerate your configs:

cd cue-front-path/setup
docker-compose run setup generate configuration-set

Copyright © 2017-2023 Stibo DX A/S Page 27

CUE Front Developer Guide

4 Using CUE Front

The default Waiter supplied with CUE Front is a PHP application that uses the Twig templating library
to merge HTML templates with JSON data supplied by the Cook. It includes a set of demo templates
designed to work with a demo publication (also supplied). The Waiter also includes patternlab.io, a
PHP application that supports atomic design. Atomic design is a design methodology that provides
a framework for breaking web site designs down into re-usable components. The supplied demo
templates are structured using atomic design, and can be viewed from the Patternlab.io interface.

You can create a CUE Front presentation layer for your own publication based on the supplied demo as
follows:

1. Install the CUE Front start pack as described in chapter 2.

2. Run the start pack's update-schema.sh script to replace the demo publication schema with
your publication's schema. See section 4.1 for further information.

3. Modify the supplied GraphQL queries to work with the new GraphQL schema.

4. Modify the supplied Twig templates to work with the JSON structures output by your GraphQL
queries (or replace them with a completely new set of templates).

5. Continue modifying the supplied Twig templates until they produce the output you require.

You don't necessarily need to perform the tasks in this order. In many organisations, steps 4 and 5
will be carried out by different people from steps 2 and 3, so it might then make sense to perform
them in parallel. You could also work backwards by creating a design first, then defining the JSON
structures needed to support that design, and then creating the GraphQL queries needed to produce
those structures. In reality, wherever you start, the process will more than likely be an iterative one in
which parallel adjustments need to be made in GraphQL queries, Twig templates and possibly also the
publication definition (content-type and layout-group resources).

However, it's probably easiest to understand how CUE Front works by following the data flow from the
publication structure to the rendered page.

4.1 Updating a GraphQL Schema
The Cook needs a GraphQL schema describing the structure of the content it has access to – that is,
the structure of the publication. The CUE Front start pack includes a schema for the demo publication
in its schema folder. If you want to create a presentation layer for your own publication, then the first
step is to replace these files with files that describe your publication.

A shell script for generating new schema files based on any CUE publication is included in the start
pack. In order to use the script you must have access to the publication you want to work with. In the
cue-front folder, enter:

docker-compose exec cook bin/update-schema.sh publication-name user:password http://
my-escenic.com:8080/webservice/

or, if your Content Store installation includes CUE Live, enter:

Copyright © 2017-2023 Stibo DX A/S Page 28

http://twig.sensiolabs.org/
http://patternlab.io/
http://atomicdesign.bradfrost.com/

CUE Front Developer Guide

docker-compose exec cook bin/update-schema.sh publication-name user:password http://
my-escenic.com:8080/webservice/ http://my-escenic.com:8080/live-center-editorial/

The script's parameters are:

• The name of the publication

• Credentials for accessing the publication

• The URL of the Content Store's webservice. The URL must be terminated with a /.

• The URL of the CUE Live presentation webservice. The URL must be terminated with a /. This
parameter should only be supplied if your Content Store installation includes CUE Live

The update-schema.sh script sends a series of requests to the specified web service(s), and retrieves
the information it needs to generate a complete description of the publication structure in the form
of Javascript schema files. It writes these files to the cue-front/schema folder. You will see
that it generates an index.js for section pages, one .js file for each content type defined in the
publication's content-type resource and one .js file for each group defined in the publication's
layout-group resource. If CUE Live is installed, then it also creates a schema/entryTypes folder
containing a .js file for each CUE Live entry type.

Important notes

• If your Content Store is running in a virtual machine exposed on localhost, you cannot use
localhost in the web service parameters supplied to update-schema.sh, as this will be
interpreted to mean the Cook container's local host rather than your PC. You need to specify your
computer's actual IP address instead. You should, for example specify http://ip-address:8080/
webservice/ instead of http://localhost:8080/webservice/.

• In order for your changes to take effect, you must restart the Cook after updating the schema:

docker-compose restart cook

• The schema must be updated not only when setting up CUE Front to handle a new publication, but
also any time you modify the publication's content-type resource or layout-group resource.
If CUE Live is installed at your site, then you must also update the schema after modifying the
entry-type resource. First upload the modified resources to the Content Store, and then run
update-schema.sh using one of the commands listed above.

4.2 Working with GraphQL
The first thing you need in order to be able to display content on a page is a JSON structure that
contains all the data you need. The Cook obtains this data by executing a GraphQL query that retrieves
the required data from the Content Store's web service. You can see how this works by opening a
browser and submitting a request directly to the Cook instead of to the demo publication URL.

If you have installed the CUE Front components as described in section 2.1, then the Waiter will be
listening for requests on port 8100, and the Cook will be listening for requests on port 8101. This
means the URL of the demo publication's front page is http://localhost:8100/. If you want
to see the Cook's version of the same page, simply change the port number in the URL to 8101 and
add the name of the publication: http://localhost:8101/tomorrow-online/ (make sure you
include the final slash). The Cook will then return the JSON data from which Waiter generates the
front page:

Copyright © 2017-2023 Stibo DX A/S Page 29

CUE Front Developer Guide

{
 data: {
 resolution: {
 context: "sec",
 remainingPath: "",
 publication: {
 name: "tomorrow-online",
 features_raw: "",
 features: []
 },
 section: {
 name: "Home",
 uniqueName: "ece_frontpage",
 href: "http://vagrant:8080/tomorrow-online/",
 parameters: []
 }
 },
 headerMenu: [
...etc...

A much more useful way to view the JSON data is to use the Cook's GraphiQL (section 4.2.1) interface.

4.2.1 The GraphiQL Editor

To view JSON data returned by the Cook in the GraphiQL editor, all you need to do is append edit to
the URL you submit to the browser. Instead of

http://localhost:8101/tomorrow-online/

for example, enter:

http://localhost:8101/tomorrow-online/edit

Now, instead of simply displaying the JSON data normally returned by the Cook, the browser displays
a vertically split screen, on the left side of which is the GraphQL query that the Cook would use to
retrieve the page data:

Copyright © 2017-2023 Stibo DX A/S Page 30

CUE Front Developer Guide

If you click on the button above the query, then the result of executing the query is displayed on the
right side of the screen:

With the query and the results displayed side-by-side like this, it's relatively easy to see the
relationship between them. GraphiQL is not just a viewer, it's an editor as well. If you edit the query

displayed on the left and click the button again, then you will see the results of your modification
on the right. Try simply deleting a field – uniqueName on line 15, for example. If you then execute the
query again, you will see that the corresponding field disappears from the output on the right. Replace
the field and re-execute, and you will see that the deleted field reappears in the JSON output.

The editor offers you a lot of assistance while you are editing, including code completion. The Cook
knows your publication's data structure, so it can tell you what fields are available at any point in the
query. Try inserting a line somewhere in the query and pressing Ctrl-Space: the editor will display a
context menu listing the names of all the field names you can insert at this point in the query:

Copyright © 2017-2023 Stibo DX A/S Page 31

CUE Front Developer Guide

If instead of pressing Ctrl-Space you start typing, then it will display a shorter list containing valid
names that match what you have entered:

The editor underlines any invalid content in the query in red, and will display an error message if you
hover the mouse over the invalid text:

In addition to all this, GraphiQL also provides a help function that you can use to explore your
publication's data structure. To display it, click on the Docs link in the top right corner of the
GraphiQL window. You can use this to browse the publication's data structure, find the data types
of particular fields and so on. For fields that have enumeration data types, you can list all possible
enumeration values.

4.2.1.1 Saving Your GraphQL changes

By default, the GraphiQL editor does not allow you to save any changes you make. You can, however,
configure the editor to display a Save button:

Clicking on this button will save any changes you have made. The changes are saved directly into the
cue-front/recipe/queries folder used by the Cook, so the saved changes will take immediate
effect. If, for example you remove a field from the JSON data output by the query, then that content

Copyright © 2017-2023 Stibo DX A/S Page 32

CUE Front Developer Guide

will disappear from any pages in which it is used on the web site. Conversely, any fields you add to the
output will immediately be available for use by the front end.

To enable the GraphiQL editor's Save button:

1. Open cook-config.yaml for editing (see section 2.1.4 for more information about this).

2. Replace the following line:

editor: enabled

with:

editor:
 allow-save: true

You don't have to use the Cook's built-in GraphiQL editor to edit your GraphQL queries. The
queries are stored in the cue-front/recipe/queries folder, and you can use whatever
editor you choose to edit them. Some IDEs and programmer's editors include syntax support for
GraphQL.

4.2.2 Understanding CUE Front GraphQL Queries

GraphQL is a powerful language for retrieving information from hierarchical data structures such
as CUE publications. You can use it to retrieve all the information you want to display on a page in a
single query. Not only can you retrieve everything you need in one query, you can also easily ignore all
the information you don't need, so that only useful content is downloaded to the client. For a general
introduction to GraphQL, see this tutorial.

In order to retrieve content from the Content Store, the Cook needs to be supplied with a recipe. A
recipe is a Javascript module that controls the execution of a set of GraphQL queries. In a CUE Front
publication, the recipe is located in publication/recipe/recipe.js. The recipe in turn uses a set
of GraphQL queries that specify exactly what is to be retrieved. These queries must be located in the
publication/recipe/recipe.js folder. The folder must contain:

• One query for each content type in the publication, called content-type.graphql

• one query for all section pages called index-page.graphql

Since the demo publication currently has only three content types, story, picture and video the
delivered publication/recipe/queries folder contains the following queries:

• index-page.graphql

• picture.graphql

• story.graphql

• video.graphql

The query displayed in GraphicQL at http://localhost:8101/tomorrow-online/edit is the
index-page.graphql query. Here is a brief explanation of its content:

If you click on the Docs link in the top right corner of the GraphiQL window, you will see that the root
of the data structure that you can interrogate using GraphQL is called query, and it is an object of type
Query. If you click on the Query link, you will see that a Query is composed of 3 fields:

Copyright © 2017-2023 Stibo DX A/S Page 33

http://graphql.org/learn/

CUE Front Developer Guide

nop
Not used.

resolution
This field contains information about the current request that has been returned from the
Content Store's resolver. The resolver is a web service that converts public-facing "pretty"
URLs like http://my-escenic.com/news/2016-12-02/Some-Exciting-Story.html
to internal Content Store web service URLs like http://my-escenic.com/webservice/
escenic/content/206246. resolution is a Resolution object that contains the
following fields:

type
art or sec, according to whether the requested page is a content (article) page or a
section page

remainingPath
When the resolver resolves a URL, it starts from the left hand end of the string and
resolves as much as it can. If there is anything left at the end of the string, it is returned
in this string. The remaining path might contain a list of URL parameters, for example,
or additional URL segments that can be used by the page rendering application to modify
the output in some way.

publicationName
The name of the current publication (tomorrow-online in the case of the demo
publication).

sectionUniqueName
The unique name of the current section, or current content item's home section.

context
This field contains the main body of the query. It can be one of a number of different object
types that correspond to the content types in the current publication. In the case of the demo
publication, the possible object types are SectionPage, Story, Picture and Video. The
structure of these object types is then directly related to how they are defined in the publication's
content-type and layout-group resources.

A standard CUE Front Query object always has these members.

The first line in the context segment of the query contains:

... on SectionPage

... on is a GraphQL conditional clause. It says "if this context object is of the type SectionPage,
then ...". index-page.graphql queries will always contain this clause to ensure they only operate on
section pages. If you look at the other supplied queries, you will see that they contain similar clauses
to select the appropriate page types: ... on Story in story.graphql, ... on Picture in
picture.graphql and ... on Video in video.graphql. ...on clauses are used other places in
index-page.graphql to distinguish between object types and determine how to handle them.

Another useful GraphQL construct is:

...name

for example:

top {

Copyright © 2017-2023 Stibo DX A/S Page 34

CUE Front Developer Guide

 ...teaser

which appears on line 52 of index-page.graphql. This is simply an inclusion mechanism. It
includes a fragment (called teaser), defined further down in the query:

fragment teaser on AtomLink

In this case, therefore the ...teaser statement is equivalent to

 ... on AtomLink {
 [body of teaser fragment]
 }

but allows the fragment to be reused in multiple places in the query, if required.

CUE Front's GraphQL snippet feature enables more extensive reuse of GraphQL code. A snippet is
stored in its own file and can be included in multiple queries. For more information, see section 4.2.4.

If you want to know more about GraphQL, there is a helpful tutorial here.

4.2.3 Mapping URLs To GraphQL Queries

The GraphQL query used to retrieve content for any given URL is determined by a set of configurable
mapping rules. A default mapping configuration is included in the CUE Front start pack that allows
you to control what GraphQL queries are used to retrieve content in different contexts by observing the
following naming conventions:

• The query called index-page.graphql is the default query used for all section pages.

• If you want to use different queries for some sections, create queries with names of the form
index-page-section-name.graphql, where section-name is the unique name of a section. A
query named like this will be used for the specified section (but not for its subsections). A query
called index-page-sports.graphql, for example, will be used for the Sports section but not
for any of its subsections (Football, for example).

• There is no default query for content items. You must create a separate query for each content-type
in your publication, with a name of the form content-type.graphql.

• If you want to use different queries for certain content item types when they belong to particular
sections, then you can do so by creating queries with names of the form content-type-section-
name.graphql. A query called story-sports.graphql, for example, will be used for story
content items that belong to the Sports section.

• Any URL that starts with .esi/ will be directed to queries in the recipe/queries/esi folder.
The query called recipe/queries/esi/header.graphql, for example, will be used to
respond to requests for .esi/header. This convention is intended to support the use of Edge Side
Includes. For further information, see chapter 9.

Currently, the Cook's GraphiQL editor provides no means of renaming queries or saving them under
new names. If you want to make specialized queries for particular sections, then you must do it as
follows:

1. Log in on the machine where CUE Front is installed.

2. cd to your CUE Front installation.

Copyright © 2017-2023 Stibo DX A/S Page 35

http://graphql.org/learn/
https://en.wikipedia.org/wiki/Edge_Side_Includes
https://en.wikipedia.org/wiki/Edge_Side_Includes

CUE Front Developer Guide

3. Copy an existing query to a new name. For example:

cp recipe/queries/index-page.graphql recipe/queries/index-page-sports.graphql

4. Restart the Cook:

docker-compose restart cook

5. If you now open the GraphiQL editor in the context of the Sports section by pointing your
browser to http://localhost:8101/tomorrow-online/sports/edit, you will see that
the editor loads the index-page-sports.graphql query rather than index-page.graphql.

You can now modify index-page-sports.graphql so that the Cook delivers a different JSON
structure for the Sports section than it does for other section pages.

Changing the default URL-query mapping

All the naming conventions described above are just the default mapping rules included in the start
pack. If they do not meet your needs, you can easily extend them, or completely replace them with
mappings of your own. For information on how to do this, seesection 8.1.3.

4.2.4 GraphQL Snippets

Fragments are useful way of reusing GraphQL code. However, they only allow you to reuse code
within a single GraphQL query. Snippets, on the other hand allow you to share code between GraphQL
queries. Snippets are segments of GraphQL code that are stored in special snippet files and included
when queries are loaded.

To create a snippet, you simply surround the code you want to re-use with a pair of special comments
like this:

#define snippet-name
your-reusable-code
#enddefine

When you save a GraphQL query that contains such a snippet definition, the snippet definition is
stripped out of the Graphql query and saved as a .snippet file in the /recipe/queries folder. The
snippet definition in the GraphQL query is replaced by an #include comment:

#include snippet-name

So if you save a GraphQL query that looks like this:

query {
 resolution {

 #define section-info
 section {
 name
 uniqueName
 href
 parameters {
 key
 value
 }
 }
 #enddefine

Copyright © 2017-2023 Stibo DX A/S Page 36

CUE Front Developer Guide

 }

}

what is actually saved in the query file is:

query {
 resolution {

 #include section-info

 }

}

In addition, a new file, /recipe/queries/section-info.snippet, is created:

section {
 name
 uniqueName
 href
 parameters {
 key
 value
 }
}

You can now include this snippet in other queries as follows:

 #include section-info

Note that although only #include commands are saved in query files, when you open a query in the
editor, you will see complete, expanded snippets like this:

query {
 resolution {

 #shared section-info
 section {
 name
 uniqueName
 href
 parameters {
 key
 value
 }
 }
 #endshared

 }

}

You can edit the contents of the #shared segment: when you save, the relevant snippet file is updated,
effectively updating all the queries that include it.

Copyright © 2017-2023 Stibo DX A/S Page 37

CUE Front Developer Guide

The #define, #enddefine, #shared, #endshared and #include keywords must be written
exactly as specified with no space after the # character otherwise they will be treated as ordinary
comments and ignored.

4.3 Working With Twig and Patternlab
The Waiter generates the pages of a publication by combining the JSON returned by the cook with
Twig templates and CSS styles. The default location of those styles and templates is the publication
templates folder. The contents of this folder is monitored by a synchronization process, so any
changes you make to your templates or SCSS files are immediately copied into the Waiter's Docker
container and result in corresponding changes to your web site. These templates, however, not only
drive the actual web site - they also drive a Patternweb style guide, which you can use to view static
examples of all the templates that make up your publication.

Open your browser and point it at http://localhost:8103/. You should see the demo
publication's style guide, displayed using the Patternlab web application:

Using this application you can explore all the Atomic Design patterns from which the demo
application is constructed – each pattern being a Twig template fragment.

You will see that Patternlab's menu bar contains menus called TOKENS, ATOMS, MOLECULES,
ORGANISMS and PAGES. These menus represent different types of patterns. The PAGES menu
contains the names of the page patterns used for the demo publication: Atomic Frontpage is the
name of the pattern used for the publication's section pages, and Article Page is the name of the
pattern used for story pages. The ORGANISMS menu contains re-usable patterns that may appear
several places in a page pattern, or in several different page patterns, such as the Five Story Section
component. The MOLECULES menu contains smaller patterns that may appear several places in
different organisms or directly in page patterns, and the ATOMS menu contains even smaller patterns
that may be re-used in molecules, organisms or pages. Finally, the TOKENS menu contains variables
defining the colors, fonts, icons and so on that form the basis of the design.

Copyright © 2017-2023 Stibo DX A/S Page 38

CUE Front Developer Guide

When you select a pattern from one of the menus, the template is processed using Twig and the results
are displayed in Patternlab. In order to be able to display the patterns, Patternlab has access to some
sample JSON data for merging with the templates.

Besides allowing you to browse the patterns from which a design is constructed, Patternlab offers a
number of other functions. The most useful are:

• You can display a pattern's template code plus a description of the pattern by selecting Show
Pattern Info from the Tools menu at the right hand end of the toolbar.

• You can see what each pattern looks like on different size screens by selecting a size option from the
right hand end of the menu bar: Small, Medium, Large or Full (the default).

Patternlab requires the templates that make up a pattern library to be stored in a known location, in
accordance with specific naming conventions. A publication's patterns are stored in its templates/
_patterns folder. In the templates/_patterns/10-pages, for example, you will find all the
templates that appear in Patternlab's PAGES menu.

Patternlab is a very useful review tool for designers: you can work directly on the patterns in the
library, and use Patternlab to review the results of the changes in a variety of contexts. If you make a
change to an atom template, for example, then you can use Patternlab to see what the change looks like
in a variety of contexts:

• The atom in isolation

• The various molecules, organisms and pages in which the atom appears

• At different screen sizes

In addition, since Patternlab uses locally stored static data files for display purposes, you are not
dependent on access to a working site for the design work. If you want to export the Patternlab style
guide to work with it on a different machine, you can do so by entering:

make dist-style-guide

in the cue-front folder. This will create a zip file containing the style guide in the cue-front/dist
folder.

Patternlab supports the concept of pattern states such as in progress, in review, unplugged
and complete to help you organize your workflow. Pattern states are represented by coloured dots
displayed before the pattern names in Patternlab menus, and the states are "inherited". That is, if an
atom is in progress, then all other patterns that include that atom will also be displayed as in progress
by Patternlab.

Pattern states are implemented by means of a naming convention. To put a pattern in the unplugged
state, you simply append @unplugged to the end of its file name: rename 00-header.twig to 00-
header.twig@unplugged, for example.

A good deal of Patternlab functionality is governed by naming conventions. For a brief introduction
to these conventions, see section 4.3.1. For more detailed information about Patternlab, see the
Patternlab documentation.

Copyright © 2017-2023 Stibo DX A/S Page 39

http://patternlab.io/docs/
http://patternlab.io/docs/

CUE Front Developer Guide

4.3.1 Patternlab Conventions

This section describes Patternlab conventions as they are used in CUE Front. For more detailed
information about Patternlab conventions, see the Patternlab documentation.

Templates are stored in the cue-front/templates/_patterns/ folder. Each subfolder within this
folder defines a top level pattern group that appears as a menu in the Patternlab menu bar: The
folders are:

01-tokens
02-atoms
03-molecules
04-organisms
10-pages

The numeric prefixes are used to control the order in which the menus appear in the menu bar. These
top level pattern group names may not include hyphens.

You can either place Twig templates directly in the top level pattern group folder, or you can create
subfolders that will be displayed as submenus in Patternlab and then place your Twig menus in the sub
folders. You can use numeric prefixes to control the order of both subfolders and Twig menus, just as
for the top level folders.

Twig files may be given state suffixes such as @inprogress and @unplugged to indicate their
current state.

Patternlab also enforces conventions with regard to the naming of patterns within Twig templates. In
order to include a template within another template, you construct the template name as follows:

topLevelPatternGroup-pattern

where:

topLevelPatternGroup
is the name of the top level pattern group to which the pattern belongs (excluding any numeric
prefix)

pattern
is the name of the pattern (excluding any numeric prefix, any state suffix and the .twig file
extension)

In other words, the Twig template templates/_patterns/04-organisms/02-articles/
richtextfield.twig must be referenced as follows when included in another template:

{% include "organisms-richtextfield" %}

The important things to note here are that:

• The name is composed only of the top level pattern group name and the pattern name: the
subfolder name articles is not used

• Since subfolder names are not used, you must ensure that your pattern names are unique within
each top level pattern group

• No relative addressing is used (so that templates can easily be moved around in the folder
structure)

Copyright © 2017-2023 Stibo DX A/S Page 40

http://patternlab.io/docs/

CUE Front Developer Guide

4.3.2 Standard Template Structure

Tomorrow Online and the default starter publication provided by Stibo DX adhere to a standard
template structure that makes the templates relatively easy to extend and modify. This structure makes
use of layouts, special top-level templates that provide the overall framework of different page types.
Understanding and adhering to this structure will make it much easier to work with your publications.

4.3.2.1 The pages-index Template

The first template loaded by the Waiter is pages-index: that is, a template called index.twig,
located somewhere in the _patterns/10-pages folder. In Tomorrow Online, this is templates/
_patterns/10-pages/other/index.twig. This initial template should not contain any markup:
all it should do is examine the data supplied by the cook, and based on that data, select an appropriate
page template to include. Here is the content of Tomorrow Online's index.twig:

{%- if data.tag -%}
 {%- include ["pages-topic-page"] -%}
{%- elseif data.resolution.context == "sec" -%}
 {%- include ["pages-" ~ data.resolution.section.uniqueName ~ "-page" , "pages-" ~
 data.resolution.section.name , "pages-generic-section-page"] -%}
{%- elseif data.resolution.context == "art" -%}
 {%- include ["pages-" ~ data.context.type | lower, "pages-generic-article-page"] -
%}
{%- endif -%}

If the data supplied by the Cook contains a tag field, then the template pages-topic-page is
included.

If the resolution.context field has the value "sec", then a section template is included. First a
section-specific template is searched for (that is, a template with a name based on the current section's
unique name or name). If no section-specific template is found, then the pages-generic-section-
page template is selected.

If the resolution.context field has the value "art", then an article template is included. First
a content type-specific template is searched for (that is, a template with a name based on the current
content item's unique name or name). If no content type-specific template is found, then the pages-
generic-article-page template is selected. Note that Tomorrow Online does not actually provide
a pages-generic-article-page template. Since there are content type-specific templates
available for all the publication's content types, a generic template is not needed.

4.3.2.2 Layouts

The various page templates in a publication will most often have a lot of markup in common: page
headers and footers, navigation controls and so on. In order to avoid duplicating this in all the page
templates, you can instead create layouts. A layout is a specialized top-level template designed to
be extensible at specific points. Here is the default layout provided with Tomorrow Online, called
default-master.twig:

<!DOCTYPE html>
<html lang="en" prefix="og: http://ogp.me/ns#">
 <head>
 <title>
 {% block title %}
 {{ data.context.name | default(data.context.title) |
 default(data.context.fields.title) }}

Copyright © 2017-2023 Stibo DX A/S Page 41

CUE Front Developer Guide

 {% endblock %}
 </title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 {% include "globals-meta" %}
 {% include "globals-stylesheet" %}
 <script src="https://use.typekit.net/cgd1ygv.js"></script>
 <script>try {
 Typekit.load({ async: true });
 }
 catch (e) {
 }</script>
 {% include "globals-browserSync" %}
 </head>

 <body class="base-font bg-primary">
 {% if (devmode) and errors | length > 0 %}
 {% include "atoms-error-header" with {"errors" : errors} only %}
 {% endif %}

 {% block header %}
 {% include "organisms-header" with {"menu" : data.headerMenu} %}
 {% endblock %}

 <div class="container">
 {% block main %}{% endblock %}
 </div>

 {% block footer %}
 {%- include "organisms-footer" with {"menu": data.footerMenu} -%}
 {% endblock %}

 {% include "globals-scriptsBlock" with {"config": config} %}
 </body>
</html>

As you can see, it contains the basic skeleton of an HTML page. Every section of the layout that is
enclosed in a {% block name %} {% endblock %} structure can be replaced by a template that
extends this layout. So, for example, Tomorrow Online's topic-page template looks like this:

{% extends "default-master.twig" %}

{% set intro = data.intro[0] %}
{% set stories = data.results %}

{% block main %}
 <div class="mw-row center cf">
 {% if intro %}
 <div class="cf">
 {% include "atoms-article-header-uppercase" with { "text" :
 intro.fields.title } %}
 {% include "atoms-article-teaser" with {
 "class":"f5 f4-l normal primary fl-l w-two-thirds-l ph4 mt0",
 "text": intro.fields.body_raw
 } %}
 </div>
 {% endif %}

 <div class="bt mh4 mt1 pv3 light-grey f6 relative"></div>

Copyright © 2017-2023 Stibo DX A/S Page 42

CUE Front Developer Guide

 <!-- list latest 6 in the tag page -->

 <section class="mw-row center cf pb4 w-100">
 {% for story in stories[:6] %}
 <div class="w-third-l fl-l ph4 pa4-l pv0-l clear-every-third">
 {% include "molecules-story-teaser" with {"story": {"content": story}} %}
 </div>
 {% endfor %}
 </section>

 <div class="bt mh4 mt1 pv3 light-grey f6 relative"></div>

 <!-- List the rest of the tags -->
 <section class="mw-row center cf pb4 w-100">
 {% for story in stories[6:] %}
 <div class="w-two-thirds-l ph4">
 {% include "molecules-top-bottom-styled-list-item-with-section-link" %}
 </div>
 {% endfor %}
 </section>
 </div>
{% endblock %}

On the first line, the {% extends "default-master.twig" %} declaration says that this
template is to be based on the layout default-master.twig. This declaration can then be followed
by one or more block declarations:

{% block name %}
...
{% endblock %}

where name references one of the blocks declared in default-master.twig.

The content of any blocks declared in a template override the content of the corresponding blocks in
the layout. In this case, the topic-page template only contains one block declaration - main. The
template therefore inherits all the mark-up in the default-master.twig layout except for the main
block, which it replaces with local markup.

Layouts, unlike all other Twig templates are not stored in the templates/_patterns folder, but
in the templates/_layouts folder. One layout may be sufficient for many publications, but for
publications with pages that don't all have the same overall look and feel it may be necessary to create
several layouts.

The following conventions must be followed when naming and referencing layouts:

• The layouts must be stored in the templates/_layouts folder

• When referencing a layout in an extends statement, you must include the .twig extension in
the layout name, as in the example above.

4.4 Managing Multiple Publications
The Waiter can be configured to serve multiple publications from the same Cook and Content Store.
Depending on how similar the publications are they can either be rendered using shared templates

Copyright © 2017-2023 Stibo DX A/S Page 43

CUE Front Developer Guide

and styles or a completely separate template tree. Whichever method you choose, separate Patternlab
style guides are generated for each publication, so you can use Patternlab to review layouts for all your
publications.

4.4.1 Shared Templates and Styles

Currently, support for multiple publications based on shared templates and styles is limited to
Docker-based installations. If you have a bare-metal installation then you will need to maintain
separate template folders for each publication.

If the publications to be served by the Waiter are similar in structure (that is, they are based on similar
Content Store content-type and layout-group definitions), then they can in many cases be
rendered using a single set of templates and styles. Any layout differences that are required can be
provided using overlay templates and style definitions.

Suppose, for example, that you have two publications called mypub and myotherpub. They have
identical content-type and layout-group definitions, and can therefore be served using the same
Twig templates and styles. You would, however like myotherpub to differ from mypub in certain
respects. You can do this by creating alternative versions of some files in your CUE Front templates
folder:

• Alternative .scss files (called style overlays) where you want to make changes to the publication
CSS

• Alternative .twig files (called template overlays) where you want to make changes to
publication HTML

• Alternative .json files (called data overlays) where you want to make changes to the static data
displayed in the publication styleguide

• Alternative .md files (called description overlays) where you want to make changes to the
descriptions displayed in the publication styleguide

• An alternative favicon.ico file where you want to make changes to the publication's favicon

Any overlays you create must be named according to the following convention:

base-name+overlay-name.extension

where:

base-name
Is the name of the original Twig or SCSS file you are making a modified version of. The base
name must be exactly the same as the name of the original file it is based on, including all
prefixes and suffixes.

overlay-name
Is the name of the overlay the modification is to belong to. You are recommended to use the
name of the overlay's target publication as the overlay name, since the relationship between
overlays and publications is 1:1.

extension
Is the file type extension (twig or scss)

To make a myotherpub overlay for the template 02-medium-teaser.twig, for example, you would
copy it to a file called 02-medium-teaser+myotherpub.twig and then make whatever changes

Copyright © 2017-2023 Stibo DX A/S Page 44

CUE Front Developer Guide

you want in the copied file. Similarly, to make a myotherpub overlay for _colors.scss, you would
copy it to a file called _colors+myotherpub.scss and then make your required changes.

You must use a + sign to separate overlay-name from base-name, no other character may be
used. If you make use of Patternlab variants, then the overlay name must still come last, after the
variant name. In other words, the overlay for a file called 02-medium-teaser~special.json
must be called 02-medium-teaser~special+myotherpub.json, not 02-medium-teaser
+myotherpub~special.json.

The CUE Front synchronization process copies the contents of the templates folder to one or more
folders created in a Docker volume that is mounted in the Waiter and Patternlab containers. In an
installation with no overlays this volume has only one templates folder, called templates/_base,
which contains an unmodified copy of the source templates folder. If there are overlays, then the
volume's templates folder contains one subfolder for each overlay name, plus a _base subfolder. If
you include +mypub and +myotherpub overlay names in your source templates folder, for example,
then the Waiter and Patternlab containers will have access to the following generated templates
folders:

templates/_base
Contains a copy of the source templates folder where all +mypub and +myotherpub files are
removed.

templates/mypub
Contains a copy of the source templates folder where:

• all files with +mypub overlays are replaced by their overlays (for example, 02-medium-
teaser.twig is deleted, and 02-medium-teaser+mypub.twig is copied to 02-
medium-teaser.twig).

• all +myotherpub files are removed.

templates/myotherpub
Contains a copy of the source templates folder where:

• all files with +myotherpub overlays are replaced by their overlays. (for example, 02-
medium-teaser.twig is deleted, and 02-medium-teaser+myotherpub.twig is copied
to 02-medium-teaser.twig).

• all +mypub files are removed.

The generated template folders in this Docker volume are kept in sync with the master templates
folder you work on. Any changes you make to files in the master templates folder are immediately
copied to the appropriate generated templates folders, and will therefore be reflected in both your
publications and the publication style guides.

As part of the synchronization process, the SCSS files in the generated template folders are compiled to
a single CSS output file for each publication. The SCSS files in the base templates folder are compiled
to a file called layout.css. The SCSS files in the overlay templates folders are compiled to files called
overlay.css. The SCSS files in a templates/mypub folder would be compiled to a mypub.css file,
and the SCSS files in a templates/myotherpub folder would be compiled to a myotherpub.css
file. All the generated CSS files are written to a separate Docker volume which is also mounted in the
Waiter and Patternlab containers. The Waiter and Patternlab will therefore in this case have access to
three different CSS files called layout.css, mypub.css and myotherpub.css.

A new overlay template folder is automatically created as soon as you rename any file using an
overlay name that you haven't used before. In other words, renaming _colors.scss to _colors

Copyright © 2017-2023 Stibo DX A/S Page 45

CUE Front Developer Guide

+newpub.scss will cause a templates/newpub folder to be created if it doesn't already exist.
This is not the case for CSS files, however: a newpub.css file will not be automatically created. In
order to trigger the creation of a new CSS file, you must restart the styles Docker container:

docker-compose restart styles

This is only required to create a new CSS output file. If you subsequently make further CSS
changes, newpub.css will be regenerated automatically.

4.4.1.1 Creating a Publication Overlay

The overall process of creating a publication overlay is as follows:

1. Find the SCSS files in the templates folder (in the tomorrow-online demo publication, they
are located in templates/theme/css).

2. Make copies of any SCSS files you want to modify and rename them by adding a +overlay-name
suffix as described above.

3. Modify the renamed SCSS files as required.

4. Find any Twig templates that contain references to the CSS file layout.css. In most cases there
should only be two such templates. In the case of the tomorrow-online demo publication you
would need to update the following two templates:

• templates/_patterns/01-globals/05-nonvisual/_stylesheet.twig: this file
references layout.css for the publication

• templates/_meta/_00-head.twig: this file references layout.css for the style guide

5. Make copies of these templates and rename them by adding a +overlay-name suffix as described
above.

6. Open the renamed templates for editing and replace layout.css with overlay-name.css.

7. Find any other files that you want to modify (.twig, .json, .md, .ico). Copy them, rename
them as described above and modify them to meet your requirements.

8. Reconfigure the Waiter to recognise and handle the publication you have created the overlays for
as described in section 13.7.

9. Reconfigure nginx to recognise and handle the publication you have created the overlays for
(also described in section 13.7).

10. Finally, restart the Waiter and Styles containers:

docker-compose restart waiter styles

4.5 Extending CUE Front
Most CUE Front-based sites have some requirements that cannot be satisfied by CUE Front and the
CUE system alone – either because CUE does not provide a particular service or because the customer
needs or wishes to make use of a specific third-party service. Typical examples include access to
external data sources such as sports results services or stock market information, user login, paywall
systems, cookie management and so on.

It is not always obvious what approach users should take when implementing such extensions: what
technology to use, where to extend CUE Front and so on. This section is intended to provide a few
guidelines to follow when making decisions of this kind.

Copyright © 2017-2023 Stibo DX A/S Page 46

CUE Front Developer Guide

First of all, here is a list of some of the possible ways in which you can add functionality to a CUE Front
installation:

• Extend the Cook by creating a recipe extension that retrieves content from an external service such
as a stock ticker service.

• Extend the Cook by creating a recipe extension that restructures or extends content retrieved from
the Content Store in some way.

• Create your own service that generates interesting information of some kind, and then create a
recipe extension that retrieves content from it.

• Create an extension to the Waiter that generates or retrieves content of some kind, or provides
some kind of service to site users.

• Create a front-end component that sits alongside the Waiter and provides some kind of content or
service directly to clients. In this case, the nginx web server that fields incoming requests must act
as a router, forwarding requests to the Waiter or to your service depending on the request URL.

The question of how and where to implement an extension should be determined by the following
considerations:

What kind of extension is it?
One of the objectives underlying CUE Front's design is to keep business logic separate from
presentation and layout. The general idea is that the Cook should handle all business logic,
and provide the Waiter with all the information needed to construct web pages. So the general
recommendation is to implement extensions in the back end as recipe extensions. This is
particularly the case for extensions that are primarily concerned with content (such as sports
results services or stock market information services). Implementing content-rich extensions as
recipe extensions means that the retrieved or generated content can be merged into the JSON
data structure returned by the Cook, allowing all layout to be handled by the Waiter (or your
alternative front-end solution) in a uniform way.

However, extensions that are primarily concerned with user access are probably best handled in
the front end (whether that is CUE's Waiter, or your own alternative front-end). For example,
user login systems, paywall systems, cookie management systems and so on. Cookies in
particular are best dealt with in the front end. By default, the Waiter does not pass cookies on to
the Cook in order to ensure the "cacheability" of the Cook's responses.

What kind of front end do you have?
If you are using CUE's Waiter as your front end and you want to extend the front end, then you
might want to create a separate component that sits alongside the Waiter rather than directly
extending the Waiter itself. This will give you complete control over how you implement the
service: you can make use of the languages, tools and libraries of your choice without having to
conform to any limitations imposed by the Waiter. If, however, you wish to extend the Waiter
directly, it offers a set of hooks that you can use to modify and extend its behavior in various
ways. For details see chapter 5.

What are your preferences, strengths and weaknesses?
The answers to the two previous questions is general advice that may not necessarily apply
in all situations or for all organizations. For example, implementing an extension as a recipe
extension because it is "content-rich" may make sense in a general way, but not if your
development department is a PHP shop with very little experience of node.js development. In
such circumstances, sticking to what you know may well be the best strategy.

Routing

Copyright © 2017-2023 Stibo DX A/S Page 47

CUE Front Developer Guide

When implementing front end extensions, you need to ensure that routing is correctly handled and
that there is no possibility of your components duplicating URLs. If you implement your extensions
as standalone applications running alongside the Waiter, then this should not be a problem: you just
configure nginx to route requests to the correct component based on the first part of the URL, and then
each component is thereafter responsible for its own URL space.

If, on the other hand, you directly extend the Waiter or alternative front end, then the recommended
approach is to let the Cook do the first part of the routing for you by passing all incoming requests to
the Cook in the usual way. Any URLs that are not recognized by the Cook are returned in the JSON
output's remainingPath field, from which point your extension can continue the routing process as
required, and deal with the requests.

4.6 CUE Front Development Environment
To be supplied.

Copyright © 2017-2023 Stibo DX A/S Page 48

CUE Front Developer Guide

5 Writing Waiter Extensions

The Waiter provides a simple extensions framework in the form of:

• A WaiterExtension class that you can extend to create your extensions

• A set of hooks that the Waiter calls at various points during the handling of a request

To implement an extension you create a class based on WaiterExtension that listens for one or
more hooks, and takes appropriate action when the hooks are called. The hooks are all called in
sequence at specified points during a request, and the Waiter passes a hook object to the extension.
The hook object is an array. Each hook can add items of information to the hook object, so that the
total amount of information available increases as the request progresses. An extension can also add
information to the hook object, or modify existing information in the object.

Waiter extensions must belong to the namespace Extensions.

In order to be found by the Waiter, an extension must be created as a waiter service configuration
override (see chapter 14) in your publication repo. The LandingPageResolver extension used as a
example in this section, for example, should be placed in the following location:

publication-path/service/waiter/waiter-extensions/Extensions/
LandingPageResolver

5.1 The WaiterExtension Class
<?php namespace Extensions;

class WaiterExtension {
 public function register(\Waiter\WaiterClient $waiterClient, $extensionConfig =
 array()) {
 new static($waiterClient, $extensionConfig);
 }
}

5.2 Registering Hooks
Register a hook in your extension class as follows:

on (hook-name, [$this, "function-name"], [condition])

where:

hook-name
is one of the supplied Hook constants - Hook::INIT, for example.

function-name
Is the name of a function in your extension class. This is the callback function that will be
executed when the hook is called.

Copyright © 2017-2023 Stibo DX A/S Page 49

CUE Front Developer Guide

condition
Is an optional Boolean expression that determines whether or not function-name will actually be
called. The default value of condition is true, so if you don't specify a condition then function-
name will always be called.

5.3 Callback Function Return Values
A callback function may either return nothing at all, or it can return an array (which may be the hook
object). Whatever is returned is merged with the hook object. Merging in this case means that any new
elements in the returned array are added to the hook object, and any elements that already exist in the
hook object are overwritten by the returned object's elements.

5.4 The Extension Hooks
You can use the following Hook constants to refer to the hooks in your extensions. The hooks are called
in the following order (except for ERROR, which may of course be called at any point):

INIT
This hook is called immediately after a request is received by the Waiter. The hook object is
empty.

AFTER_CONTEXT_RESOLVED
This hook is called once the Waiter has determined which publication the request is directed to.
The following items have been added to the hook object:

currentPageUrl
The URL of the requested page.

contextPublication
An object containing information about the publication to which the requested page
belongs.

BEFORE_COOK_REQUEST
This hook is called when the request is ready to be forwarded to the Cook. The following items
have been added to the hook object:

cookURL
The URL of the Cook to which the request is to be forwarded.

requestOptions
The request headers to be sent to the Cook with the request.

AFTER_COOK_REQUEST
This hook is called immediately after a response is received from the Cook. The following item
has been added to the hook object:

response
The response returned by the Cook.

AFTER_TWIG_ENVIRONMENT_READY
This hook is called once the Waiter has prepared the Twig environment for processing the
response. The following item has been added to the hook object:

Copyright © 2017-2023 Stibo DX A/S Page 50

CUE Front Developer Guide

twig
An object containing the Twig environment for processing the response.

BEFORE_TEMPLATE_RENDER
This hook is called immediately before the response is sent for rendering by Twig. The following
item has been added to the hook object:

response
The final response, as prepared by the Waiter. It overwrites the earlier value of response
added by the AFTER_COOK_REQUEST hook.

ERROR
This hook can be called at any time if an error occurs. The following item has been added to the
hook object:

error
The exception object.

5.5 Registering Extensions
In order to be used, an extension must be registered in the Waiter's configuration file, waiter-
config.yaml as follows:

extensions:
 - name: \Extensions\extension-name

where extension-name is the name of your extension without its .php extension. If, for example you
have an extension called MyExtension.php, then you would register it as follows:

extensions:
 - name: \Extensions\MyExtension

You can also include configuration parameters for your extension under a config entry. For example:

extensions:
 - name: \Extensions\MyExtension
 config
 myparam: myvalue

You can structure the configuration values in any way you like. Here, for example is the configuration
for the Waiter's built-in landing page resolver:

extensions:
 - name: \Extensions\LandingPageResolver
 config:
 landingPages:
 subtitles: pages-vtt
 oembed: pages-oembed-index

5.6 Example Extension
The Waiter's built-in landing page resolver is implemented as an extension, and illustrates how an
extension should be written:

Copyright © 2017-2023 Stibo DX A/S Page 51

CUE Front Developer Guide

<?php namespace Extensions;

use \Waiter\WaiterClient;
use \Waiter\Hook;

class LandingPageResolver extends WaiterExtension {
 private $config = array();

 public function __construct(WaiterClient $waiterClient, $extensionConfig) {
 $this->config = $extensionConfig;
 $waiterClient->getHooks()->on(Hook::BEFORE_TEMPLATE_RENDER, [$this,
 "resolveStartingTemplate"]);
 }

 public function resolveStartingTemplate($hookObject) {
 $response = $hookObject["response"];
 $twig = $hookObject["twig"];
 $landingPages = $this->config['landingPages'];

 $wireframe = isset($response['data']) && isset($response['data']['wireframe']) ?
 $response['data']['wireframe'] : null;

 if (isset($wireframe)) {
 $this->renderTemplate('pages-' . $wireframe . '-index', $twig, $response);
 }
 else if ($this->hasSubtitles($response)) {
 header('Content-type: text/vtt');
 $this->renderTemplate($landingPages['subtitles'], $twig, $response);
 }
 else if ($this->isOEmbedResponse($response)) {
 //to get around oembed template for picture. Right now multiple recipe extension
 doesn't work in chain.
 // as there is an extension for image already in place, oembed extension doesn't
 have any effect.
 $this->renderTemplate($landingPages['oembed'], $twig, $response);
 }
 }

 private function hasSubtitles($response) {
 return isset($response['data']) && isset($response['data']['subtitles']);
 }

 private function isOEmbedResponse($response) {
 $remainingPath = isset($response['data']['resolution']['remainingPath']) ?
 $response['data']['resolution']['remainingPath'] : '';

 return strpos($remainingPath, 'oembed') > 0;
 }

 private function renderTemplate($template, $twig, $response) {
 echo $twig->render($template, $response);
 exit;
 }
}

Copyright © 2017-2023 Stibo DX A/S Page 52

CUE Front Developer Guide

6 Using the Fridge

The Fridge is an nginx instance run as a cache. You can use the Fridge in two different ways:

Fridge as Cook Proxy
You can configure the Waiter to retrieve content from the Fridge instead of retrieving it from
the Cook. In this case, the Fridge needs to contain JSON documents of the kind returned by the
Cook.

Fridge as Content Store Proxy
You can configure the Cook to retrieve content from the Fridge instead of retrieving it from the
Content Store. In this case the Fridge needs to contain Atom documents of the kind returned by
Content Store web services, binary files and so on.

Internally, the Fridge can be configured to operate in two different modes:

• Offline mode, in which case it only ever looks for resources in its cache folder. If a requested
resource cannot be found there, then the Fridge returns an HTTP 404 not found response.

• Online mode, in which case the Fridge acts as a true proxy: if a requested resource cannot be
found in the cache folder, then the Fridge forwards the request to the original server (the Content
Store or Cook). When the original server responds, it does two things: it forwards the response to
the caller and it stores the response in its cache folder.

The Fridge can be used for two quite different purposes:

• Offline template development

• Caching

6.1 Fridge as Cook Proxy

The Waiter can be configured to use the Fridge as its data source instead of the Cook. If you first run
the Fridge in online mode and use the web site for a while, then the Fridge's cache will slowly fill up
with JSON data representing all the visited pages. Once enough data has been assembled in this way,
you can switch the Fridge into offline mode and continue to use the web site. It will work as before so
long as you do not attempt to visit any new pages — if you do visit an uncached page, then the Fridge
will return an HTTP "Page not found" error.

This means you can, for example, use the Fridge to enable template development in offline locations
where you do not have access to the Cook. You can also copy the content of the Fridge's cache to Fridge
instances on other machines, enabling other developers who have no access to the Cook themselves to
work on template development using a realistic data set from the actual site. Given a set of JSON files
to work with, all a designer needs is a Fridge to serve the JSON files and a Waiter to render the JSON
files as HTML. The designer can then work on the Waiter's templates without any need for a Cook or
Cleaver, or access to a Content Store.

Copyright © 2017-2023 Stibo DX A/S Page 53

CUE Front Developer Guide

6.2 Fridge as Content Store Proxy

The Cook can be configured to use the Fridge as its data source instead of the Content Store. If you
first run the Fridge in online mode and use the web site for a while, then the Fridge's cache will slowly
fill up with Atom documents and binary files representing all the visited pages. Once enough data has
been assembled in this way, you can switch the Fridge into offline mode and continue to use the web
site. It will work as before so long as you do not attempt to visit any new pages — if you do visit an
uncached page, then the Fridge will return an HTTP "Page not found" error.

This means you can, for example, use the Fridge to enable both back-end recipe development and
template development in offline locations where you do not have access to the Content Store. You can
also copy the content of the Fridge's cache to Fridge instances on other machines, enabling other back-
end developers to work with the Cook in locations where they do not have access to the Content Store.

6.3 Using the Fridge as a Cache
The Fridge can play an important role in production environments as a cache. The Cook is configured
to use the Fridge and the Fridge is configured to run in online mode. As the Fridge's cache fills up with
data, the Fridge is able to respond to more and more requests by simply returning files from its cache,
thereby minimizing the load on the Content Store. In the most extreme case, all of a web site's content
can be duplicated in the Fridge's cache so that no requests ever reach the Content Store.

For such a solution to work, the content of the Fridge's cache must be kept up to date. The traditional
mechanism for doing this is expiration: each piece of content in the cache is marked as expired
after some arbitrary length of time. When content is retrieved from the cache, it is checked to see if it
has expired: if it has expired, then it is discarded and a new copy is retrieved from the back end. This
mechanism is obviously not very efficient for content that changes infrequently, since it means that
content will often be refreshed even though it has not changed.

For this reason, the Fridge does not use an expiration mechanism. Instead, a service called the Fridge
Stocker. The Fridge Stocker monitors all changes made to the content in the Content Store. Every time
a change is made to any content, the Fridge Stocker pushes the change to the Fridge, ensuring that the
Fridge's contents are always fresh. As long as the Fridge Stocker is enabled in the current setup, it is
automatically started together with the Fridge. (If you selected All when running setup, then the
Fridge Stocker is enabled.)

Using the Fridge in this way offers several advantages in production environments:

• It improves the scalability of the system by completely decoupling the presentation layer from the
Content Store and the editorial system. Increases in audience can be met by simply duplicating
CUE Front components, without any need to scale the Content Store or its database.

• It improves the reliability of the system: the Content Store can be taken off line without affecting
the presentation layer in any way.

• It can enable improved performance by allowing the Fridge's cache to be stored in a content
delivery network, for example.

The basic configuration of the Fridge Stocker can be carried out via the setup utility. You can also
edit the change manually, but if you do, then it is important to ensure that it is configured with

Copyright © 2017-2023 Stibo DX A/S Page 54

CUE Front Developer Guide

the same user credentials as the Cook. If this is not the case, then the Cook will not get updated
content.

6.3.1 Fridge Stocker SSE Configuration

The Fridge Stocker service is provided by a Change Log Daemon instance (see Change Log Daemon).
By default this instance is configured to monitor the Content Store by polling. It is, however,
possible to reconfigure the Change Log Daemon to use server-sent events (SSE) instead. You
are recommended to do so in production environments, as SSE is more efficient and more scalable
than polling. In order for the Fridge Stocker to be able to use SSE, your installation must include a
Content Store and SSE Proxy that are only used for presentation purposes. This is usually the case in
production environments. SSE cannot be used in development/test environments based on a single
Content Store that is used for both editorial and presentation purposes.

To reconfigure the Fridge Stocker to use SSE, you need to:

1. Create a service override copy of the Change Log Daemon configuration file (cue-front-
path/service/fridge-stocker/changelog/config/Daemon.properties) in your
publication repo, as described in chapter 14.

2. Edit the copied Change Log Daemon configuration file (publication-path/service/fridge-
stocker/changelog/config/Daemon.properties). For a description of the changes you
need to make, see SSE Mode Properties.

3. Regenerate the CUE Front configuration using setup and restart all the CUE Front containers,
as described in section 13.3.

6.3.2 Changing the Change Log Daemon version

The Fridge Stocker service is provided by a Change Log Daemon instance (see Change Log Daemon).
Should you need to change the version of the Change Log Daemon, you can do so by setting a
CHANGELOG_DAEMON_VERSION environment variable in setup.env. CUE Front uses a suitable
version of the Change Log Daemon by default, but you may in some cases need or want to ensure a
particular version is used.

To do this:

1. Make sure you are in the cue-front/setup folder:

cd path/cue-front/setup

2. Open path/cue-front/setup/.env in a text editor, and add the following line:

CHANGELOG_DAEMON_VERSION=version

where version is the required version number specified in full (x.y.z-n).

3. Regenerate the CUE Front configuration using setup and restart all the CUE Front containers,
as described in section 13.3.

6.3.3 Controlling Which Changes Get Pushed to The Fridge

By default the Fridge Stocker is configured to push all kinds of change made in the Content Store to
the Fridge. You may however prefer the Fridge Stocker to ignore some types of change - structural
changes (for example, the addition of a content item to a new section) or tagging changes, or changes

Copyright © 2017-2023 Stibo DX A/S Page 55

http://docs.cuepublishing.com/changelog.html
http://docs.escenic.com/changelog-guide/2.3/sse_mode_properties.html
http://docs.cuepublishing.com/changelog.html

CUE Front Developer Guide

to certain kinds of links. You can now control what kind of changes the Fridge Stocker pushes by
setting environment variables in setup.env.

There are two such environment variables:

CHANGELOG_TYPES
The Change Log Daemon's configuration file Daemon.properties contains a types
property that can be used to limit what kinds of changes are recorded in the change log. Setting
CHANGELOG_TYPES in your setup.env file indirectly sets this property. If you do not set
CHANGELOG_TYPES, then by default all changes are recorded, but if, for example, you want
to exclude tagging changes, you can do so by setting this parameter. For details of the allowed
values and their meaning, see Daemon.

CHANGELOG_LINKS
The Fridge Stocker's Changelog Daemon agent script reads each entry added to the change log
and determines what to do with it. By default, changes added to the change log are pushed to the
Fridge if either:

• The content has changed, or

• One of the following Atom resource link relations has changed:

self parent edit-media usage section-parameters media-info
subsection working-copy-of resolver-resources

You can prevent the Fridge Stocker from uploading some of these non-content changes by
specifying a shorter list of link relations in a CHANGELOG_LINKS variable. The value you specify
must be a space-separated list of link relation names. The Fridge Stocker will then only push
resources with no content changes to the Fridge if they contain a change to one of the link
relations you have specified. Changes to all other link relations will be ignored.

The value you specify must be a space-separated list of link relation names, and only the link
relation names listed above are supported. For example:

CHANGELOG_LINKS=self parent edit-media usage section-parameters

To set either or both of these variables:

1. Make sure you are in the cue-front/setup folder:

cd path/cue-front/setup

2. Open path/cue-front/setup/.env in a text editor, and add the required definitions. For
example:

CHANGELOG_TYPES=publication publication-structural
CHANGELOG_LINKS=self parent edit-media usage section-parameters

3. Regenerate the CUE Front configuration using setup and restart all the CUE Front containers,
as described in section 13.3.

6.3.4 Ensuring Plug-in Data is Handled

The Fridge Stocker constantly monitors the Content Store for content changes, and pushes those
changes to the Fridge, ensuring that the Fridge contains a true copy of the Content Store. However, the
Fridge Stocker does not monitor changes to additional data managed by Content Store plug-ins. The
following plug-ins generate or manage data that the Fridge Stocker does not monitor:

• Menu Editor

Copyright © 2017-2023 Stibo DX A/S Page 56

http://docs.escenic.com/changelog-guide/2.3/daemon_properties.html

CUE Front Developer Guide

• CUE Live

• Poll

You can, however, ensure that changes to data managed by these plugins propagates through to the
web site by configuring the Fridge's nginx cache to use its standard expiration mechanism for the
paths used by the plug-ins.

To configure nginx you need to:

1. Create a service override copy of the Fridge's config file (cue-front-path/service/fridge/
fridge.conf) in your publication repo, as described in chapter 14.

2. Edit the copied fridge.conf file as described below.

3. Regenerate the CUE Front configuration using setup and restart all the CUE Front containers,
as described in section 13.3.

When editing fridge.conf you need to add an entry containing the proxy_cache_valid
parameter for each of the above plug-ins installed at your site:

location ~ ^/menu-webservice/ {
 proxy_pass http://$http_host$request_uri;
 # Valid for 1 hour
 proxy_cache_valid any 60m;
}

location ~ ^/poll-ws/poll/.* {
 proxy_pass http://$http_host$request_uri;
 # Valid for 20 seconds
 proxy_cache_valid any 20s;
}

location ~ ^/live-center-presentation-webservice/.* {
 proxy_pass http://$http_host$request_uri;
 # Valid for 20 seconds
 proxy_cache_valid any 20s;
}

The proxy_cache_valid parameters sets the expiration time for content on the path specified with
location. Content items are marked as expired after the specified time has elapsed, and will be
retrieved from the Content Store the next time they are requested. For the examples shown above, this
means that:

• Any menu changes that are made may take up to an hour to propagate through to the web site.

• Poll and CUE Live data changes will only take up to twenty seconds to propagate through to the
web site.

You can set proxy_cache_valid to whatever time period you think is acceptable in each case. For
further information about the proxy_cache_valid parameter, see http://nginx.org/en/docs/http/
ngx_http_proxy_module.html#proxy_cache_valid.

If you add these settings to an existing Fridge configuration, you should be aware that the changes
only apply to newly cached objects. You will therefore need to manually clear any existing content
from the cache for the affected plug-ins.

Copyright © 2017-2023 Stibo DX A/S Page 57

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_cache_valid
http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_cache_valid

CUE Front Developer Guide

7 Using Data Sources

A standard Cook GraphQL query (called a content retrieval query) allows you to request
information about specific resources (sections or content items) stored in the Content Store. It allows
you to determine what items of information about a given resource you want to retrieve. You can, for
example, specify which fields of a content item you want to retrieve. You can also specify which of the
content item's relations you want to follow, and how much information you want to retrieve about
each of it's related items. Similarly, for a section page, you can specify which layout groups you are
interested in, and how much information you want to retrieve about the content items desked in those
groups.

A content retrieval query, however, only lets you request information directly related to the context
object — that is, the section page or content item pointed to by the request URL. Sometimes you want
to be able to include other information on a page. You might, for example, want to include links to
content items with a particular tag, content items belonging to a different section or even a different
publication, content items that are tagged with the same tag as the current content item and so on.

Data sources provide a means of including this kind of information in the JSON data returned by the
Cook. A data source is a kind of saved search, written in graphQL. You can use the Cook's graphQL
editor to write data source queries that are not limited to traversing the Content Store's graph. Data
source queries are in fact mostly executed by Solr and offer a great deal of power and flexibility.

You can make the following kinds of data source queries:

• Get content items related to the current content item

• Get content items of a specified type

• Get content items belonging to a specified publication

• Get content items belonging to a specified sections

• Get content items with a specified value in a specified field

• Get content items tagged with a specified tag

• Get content items that share one or more tags with the current content item

• Get content items related to the current content item

You can also make more complex queries by combining queries of most of the above types using AND
and OR operators. So, for example, the following data source query will get all story content items
that have an "Elections" tag:

query {
 and {
 tag(tag: "tag:tomorrowonline@escenic.com,2017:elections")
 type(name: "story")
 }
}

This slightly more complex query will get all story or picture content items that have an "Elections"
tag:

query {
 and {
 tag (tag: "tag:tomorrowonline@escenic.com,2017:elections")

Copyright © 2017-2023 Stibo DX A/S Page 58

CUE Front Developer Guide

 or {
 type (name: "story")
 type (name: "picture")
 }
 }
}

Executing a data source query returns an intermediate JSON structure containing the results of the
query.

You can save data source queries and then execute them from within your content retrieval queries.
GraphQL can then be used to pick out the exact items of information required from the results
returned by a data source. This effectively makes it possible to construct extremely sophisticated
queries that leverage the strengths of both GraphQL and Solr.

7.1 Creating a Data Source
To create a data source, start up your browser and navigate to the "Cook view" of any page in your
publication. For example: http://localhost:8101/tomorrow-online/. You should see
the JSON data for the page you have chosen. Now add the /edit suffix to the URL to display the
GraphiQL editor. Make sure that the editor is displayed and that it has a Save button. If it doesn't,
then you need to enable saving (see section 4.2.1.1).

If saving is enabled, then replace the /edit suffix with /_datasource/politicalContent. This
URL means "show me the data source query called politicalContent, in the context of http://
localhost:8101/tomorrow-online/. Assuming you haven't already created a data source query
called politicalContent, what you will see is the following message:

{
 message: "No query found with name 'politicalContent'"
}

Adding /edit to the end of this URL (so the whole URL is http://localhost:8101/tomorrow-
online/_datasource/politicalContent/edit) should give you a new, empty GraphiQL editor
with the title politicalContent.graphql. To start your query, enter:

query {

}

and with the cursor inside the braces, press Ctrl-Space. You will see that the editor works in the
same way as when editing a content retrieval query, but that the options available to you are different.
If you explore the help in the Docs section on the right side of the editor, you will see that it too now
contains completely different information, aimed at helping you build a data source query rather than
a content retrieval query.

A data source query is made by combining special functions called filters. The root query field may
contain only one top-level filter: an and, an or or a related(). All the other filter types can only be
used as children of an and or or filter. For example:

query {
 and {
 tag(tag: "tag:tomorrowonline@escenic.com,2017:politics")

Copyright © 2017-2023 Stibo DX A/S Page 59

CUE Front Developer Guide

 type(name: "story")
 }
}

This will generate a Solr query in which the child filters are combined with AND operators:

(classification:"tag:tomorrowonline@escenic.com,2017:politics" AND
 contenttype:"story")

If the top level filter was an or instead, then the filters would be combined with OR operators:

(classification:"tag:tomorrowonline@escenic.com,2017:politics" OR contenttype:"story")

Even if your query only has one such filter, the Cook requires you to have an and or or at the top level
(although in this case, of course, it doesn't matter which you choose). This data source query:

query {
 and {
 type(name: "story")
 }
}

will generate this Solr query:

(contenttype:"story")

The child filters in an and or or filter may themselves be and or or filters. not filters are also allowed.
This allows you to construct more sophisticated queries. This data source query, for example:

query {
 and {
 tag (tag: "tag:tomorrowonline@escenic.com,2017:politics")
 not {
 tag (tag: "tag:tomorrowonline@escenic.com,2017:elections")
 }
 or {
 type (name: "story")
 type (name: "picture")
 }
 }
}

will generate this Solr query:

(classification:"tag:tomorrowonline@escenic.com,2017:politics"
AND -(classification:"tag:tomorrowonline@escenic.com,2017:elections")
AND (contenttype:"story" OR contenttype:"picture"))

(contenttype:"story")

When you execute this kind of data source query by clicking the editor's play button (), the Cook:

• Generates a Solr query

• Submits the query to Solr

• Displays a response in the editor containing both the query submitted to Solr and the response. The
Solr response is a JSON structure containing information about the matching content items found.

Copyright © 2017-2023 Stibo DX A/S Page 60

CUE Front Developer Guide

For example:

You can use this output to verify that your query is working correctly and returning the content
you are interested in. Once you are satisfied, you can save the query by clicking the Save button.
The query is saved in your CUE Front's recipe/datasources folder. You can modify it at any
time either by opening recipe/datasources/politicalContent.graphql in an editor of
your choice or by returning to http://localhost:8101/tomorrow-online/_datasource/
politicalContent/edit in the browser.

The top level filter related() is different from all the other data source filters in that it is not
implemented using Solr, but works by directly accessing the Content Store web service. For further
information, see section 7.3.12.

7.1.1 Data Source Context

When you edit the politicalContent.graphql data source query at the URI http://
localhost:8101/tomorrow-online/_datasource/politicalContent/edit in a browser,
then you are editing it in the context of the publication's front page, http://localhost:8101/
tomorrow-online/. You can view and edit the same data source query in the context of any
page in the publication: for example by going to http://localhost:8101/tomorrow-
online/ politics/2017-07-05/The-challenges-of-election-polling-34.html/
_datasource/politicalContent/edit. You will still be editing exactly the same data source,
stored in recipe/datasources/politicalContent.graphql on your disk. And in the case of
politicalContent.graphql, executing the data source will return the same results irrespective of
where you execute it.

This is not the case for all data source queries. Some data source filters are context-dependent: they
make use of the current context in the query submitted to Solr, so any data source that contains a
context-dependent filter will return different results according to the context in which it is executed.
Currently, the only context-dependent data source filters are the related() and sharedTags filters.
The sharedTags filter, for example, returns a list of all content items that are tagged with the same
tags as the context content item. So if you create a tagRelatedStories.graphql data source that
looks like this:

query {
 and {
 sharedTags
 }
}

Copyright © 2017-2023 Stibo DX A/S Page 61

CUE Front Developer Guide

and execute it at http://localhost:8101/tomorrow-online/politics/2017-07-05/The-
challenges-of-election-polling-34.html/_datasource/tagRelatedStories/edit,
you will see that it returns some results because the context is a content item that has some tags.
If, however, you execute it at http://localhost:8101/tomorrow-online/_datasource/
tagRelatedStories/edit, then it will return no results because the context is a section, and
sections have no tags.

7.1.2 Using Filter Aliases

You can improve the legibility of your data source queries by making use of aliases. You can use
the name parameter of any filter as an alias for the filter. If you do this then you can drop the name
parameter from the filter's parameter list, resulting in a cleaner, more legible query.

Here is a small query that does not make use of aliases:

{
 and{
 or{
 section(name: "politics" includeSubsections: true)
 section(name: "sport" includeSubsections: true)
 }
 type(name: "story")
 }
}

and here is the same query where the name parameters have been converted to aliases:

{
 and{
 or{
 politics: section(includeSubsections: true)
 sport: section(includeSubsections: true)
 }
 story: type
 }
}

The use of aliases in this way has no purpose other than improving legibility.

GraphQL aliases may not contain hyphens, so you can't use them if the filter's name parameter
contains a hyphen.

7.2 Using a Data Source
Once you have created some data sources, you can use them to enrich the data structures returned by
the Cook's content retrieval queries. To do this you use one of the content retrieval functions called
datasource() or extendedDatasource(). If you go back to editing the section page content
retrieval query (index-page.graphql) at http://localhost:8101/tomorrow-online/edit,
place your cursor immediately above the headerMenu entry and press Ctrl-Space, then you will see
that the displayed list includes a datasource option. Select it and add a name parameter, specifying
the name of the data source you created:

 datasource(name: "politicalContent")

Copyright © 2017-2023 Stibo DX A/S Page 62

CUE Front Developer Guide

(You don't actually need to place the data source call before the headerMenu entry, but by default
it does have to be a top-level entry in the query, at the same level as resolution, context, menu
and so on. You can, however, configure the Cook to allow the use of the datasource() function in
different locations, see section 7.2.3.)

The datasource function returns AtomEntry objects that contain information about each content
item found by the data source query. One of the AtomEntry object's fields is __typename, which
means that you can test the returned content items' type using the same ... on content-type
technique used to test the context object:

 datasource(name: "politicalContent") {
 ... on Story {
 displayId
 fields {
 title
 }
 }
 }

Once you have determined the types of the returned content items in this way, you have access to all
of their content and relations in exactly the same way as for content items retrieved directly from the
Content Store.

You can optionally prefix the datasource function with a descriptive field name to make the output
structure easier to navigate:

 politicalContent: datasource(name: "politicalContent") {
 ... on Story {
 displayId
 fields {
 title
 }
 }
 }

Executing the query now will produce the same output as before, but with an additional
politicalContent field containing the selected information about the content items returned by
the datasource:

...
 "politicalContent": [
 {
 "displayId": "29",
 "fields": {
 "title": "Cameron promises 'seven-day NHS'"
 }
 },
 {
 "displayId": "26",
 "fields": {
 "title": "'£260m cost' if line not electrified"
 }
 },
 ..etc...
]
...

Copyright © 2017-2023 Stibo DX A/S Page 63

CUE Front Developer Guide

7.2.1 The extendedDatasource Function

The extendedDatasource() function has exactly the same input parameters as the datasource()
function, but returns some additional information. Along with the actual results from the executed
data source, extendedDatasource() returns metadata about the result set. The metadata includes
the total number of result items, query execution time, offset, item count and so on. This information
can be used (for example) to paginate data source search results.

The inclusion of these additional fields mean that the result set is returned in an array called items.
Whereas datasource() directly returns an array of AtomEntry objects, extendedDatasource()
returns the following structure:

total: Int
time: Float
offset: Int
count: Int
items: [AtomEntry!]!

7.2.2 Datasource Function Parameters

The datasource() and extendedDatasource() functions have identical parameters that can be
used to control, limit and organize the returned content items:

datasource(
 name: String
 deduplicate: Boolean
 sort: DataSourceOrder
 offset: Int
 count: Int
 params: [Param]
)

The Datasource function must have either a name parameter or a q parameter.

name: String
The name of the data source to execute. You can if you wish replace this parameter with a q
parameter along with an optional and fq parameter. These parameters allow you to define
searches using Solr query syntax instead of data source syntax, giving you access to more
sophisticated search features should you need them. In order to use these parameters, you need
to have a good understanding of Solr and its query syntax.

q: String
A Solr query. Note that any quote marks in the query need to be escaped with a backslash. For
example:

q: "(publication:\"tomorrow-online\" AND home_section_name:\"Sports\" AND
 (contenttype:\"storyline\" OR contenttype:\"story\"))"

For further information see the Solr documentation, which can be found at https://
solr.apache.org/.

fq: String
A Solr filter query specification. For further information see the Solr documentation, which can
be found at https://solr.apache.org/.

Copyright © 2017-2023 Stibo DX A/S Page 64

https://solr.apache.org/
https://solr.apache.org/
https://solr.apache.org/

CUE Front Developer Guide

deduplicate: Boolean
If set to true, then any duplicates in the result set are removed. The default is false. This
parameter only has any effect when the called data source contains a related() filter, since
this is the only data source filter that can return duplicates.

sort: DataSourceOrder
The order in which the returned elements are to be sorted. The possible options are:

CREATED: Sort by creation date, most recent first
OLDEST_CREATED: Sort by creation date, oldest first.
PUBLISHED: Sort by publishing date, most recent first.
OLDEST_PUBLISHED: Sort by publishing date, oldest first.
UPDATED: Sort by last update, most recent first.
OLDEST_UPDATED: Sort by last update, oldest first.
FIELDS sort-specification: Sort as specified in sort-specification.

The FIELDS option allows you to sort the elements by any field (not just date fields) and also
to sort by multiple fields. It must be followed by a sort-specification consisting of a comma-
separated list of field specifications in the form:

field-name sort-order

where field-name is the name of a field to sort by and sort-order is either asc (for ascending) or
desc (for descending). Example FIELDS entries could include:

FIELDS title asc

or

FIELDS lastmodifieddate desc, title asc

This parameter does not work for data sources that contain a related() filter.

offset: Int
An offset to be applied to the result set (by omitting the first n results). If an offset of 2 is
specified, then the first two results are omitted. The offset is applied after any deduplication and
sorting.

This parameter does not work for data sources that contain a related() filter.

count: Int
The maximum number of results to be returned. Once this number is reached, any remaining
results are dropped. The count limit is applied after any deduplication, sorting and offset have
been applied.

This parameter does not work for data sources that contain a related() filter.

params: [Param]
An array of key/value pairs to be passed in to the data source as parameters. Each element in the
array consists of:

key: String!
The name of the parameter to be passed to the data source.

value: String!
The parameter value.

To pass two parameters called pub and sec to a data source called mydatasource, for
example:

datasource(
 name: "mydatasource"

Copyright © 2017-2023 Stibo DX A/S Page 65

CUE Front Developer Guide

 params:
 [
 {key: "pub", value: "tomorrow-online"},
 {key: "sec", value: "sports"}
])

7.2.3 Changing The Data Source Context

Some data source filters (currently only one, the sharedTags() filter) make use of the data source
context. The sharedTags() filter returns content items that share tags with the content item in the
data source context. By default, that context is the context of the Graphql query from which the data
source is called. So if the current context is a section, for example, sharedTags() will always return 0
results.

You can, however, control the context of the data source by calling datasource() (or
extendedDatasource()) at the content level of your query rather than at the top level. For example,
while processing a teaser on a section page:

fragment teaser on AtomLink {
 ...
 content: follow {
 type: __typename
 ... on Story {
 relatedStories: datasource(name:"shared_tags") {
 ...
 }
 ...
 }
}

In this case, the content item referenced in the teaser is passed to the data source as its context.

By default you cannot do this: the GraphiQL editor will not offer datasource() as an option at this
location in the query. You can, however, configure it to do so for specific, named content types. If you
want to be able to use your story and video content types as data source contexts then you can
enable this by adding the following to your Cook config file:

recipedata:
 extensions:
 - name: '@escenic/cue-front-extension-datasources'
 config:
 extendTypes:
 - Story
 - Video

Note that the first letter of the content type name must be capitalized when specified here, even if it
isn't capitalized in the content-type resource. This is because you're actually specifying the name
of the GraphQL type that corresponds to your content type, not the content type itself.

7.3 Data Source Reference
This section contains reference descriptions of the various components of a data source.

Copyright © 2017-2023 Stibo DX A/S Page 66

CUE Front Developer Guide

The primary components of a graphql query are normally called fields, since they reference the fields
of a JSON data structure. A data source definition is not an ordinary graphql query in this respect: the
"fields" do not represent the fields of a JSON structure, but data filtering functions. For this reason, the
"fields" are referred to as filters throughout this section.

7.3.1 Query
query(
 [$param-name:param-type]*
)
{
 [and | or | related()]
}

or (omitting the query keyword):

{
 [and | or | related()]
}

The root of a data source query. The results of all the query's child filters are concatenated in a
single result data structure. No attempt is made to sort results or remove duplicate entries. This can,
however, be done by the content retrieval datasource() function that calls a data source query (see
chapter 7).

The query may only contain one child filter. If you add more than one filter (for example, an and
filter and a related() filter), then when you execute it in the data source editor an error message is
returned instead of a result set:

{
 "message": "Multiple queries are not allowed, please update your datasource to
 include a single query."
}

You can define any number of parameters for the query, specified using the format:

$param-name:param-type

where:

param-name
is the name of the parameter (preceded by a $ sign)

param-type
is the type of the parameter (for example String or Int)

The parameters can be referenced in the body of the query using the same names, also preceded by
a $ sign. The parameters are passed in to the query from the datasource() function's params
parameter (see section 7.2.2).

You must use the query keyword if you want to define parameters for a query.

7.3.2 And
and {
 [and | or | not | publication | section | type | tag | sharedTags | field]*

Copyright © 2017-2023 Stibo DX A/S Page 67

CUE Front Developer Guide

}

Combines all child filters with an and operator.

7.3.3 Or
or {
 [and | or | not | publication | section | type | tag | sharedTags | field]*
}

Combines all child filters with an or operator.

7.3.4 Not
or {
 [and | or | not | publication | section | type | tag | sharedTags | field]*
}

Combines all child filters with an or operator and returns all content items that do not satisfy the
resulting conditions.

7.3.5 Publication
publication(
 name: String
)

Returns all content items belonging to a publication.

Parameters

If no parameters are specified, then publication() returns all content items in the current
publication.

name: String
The name of a publication. If specified, publication() returns all content items in the
specified publication.

7.3.6 Section
section(
 name: String
 includeSubsections: Boolean
 publication: String
)

Returns all content items belonging to a specified section.

The section filter requires the CUE Content Store to be correctly configured, or else it will not
work. Specifically, the types property in the Content Store's index configuration must include
the value section. If the Cook is configured to use the editorial Solr core, then this should be
the case by default, but if it is using the presentation Solr core, then you will need to explicitly
add it. To do so, open /etc/escenic/engine/common/com/escenic/search/index/
PresentationIndexConfiguration.properties for editing on your Content Store host, and
make sure any types entry contains the value section. If there is no types entry in the file (or

Copyright © 2017-2023 Stibo DX A/S Page 68

CUE Front Developer Guide

if there was no PresentationIndexConfiguration.properties file and you have created
one), then add the following setting to the file:

types=section,article

The Content Store must then be restarted.

For general information about editing Content Store configuration files, see Configuring The
Content Store.

Parameters

name: String
The name of the section from which content items are to be returned. You must specify the
section's unique name, not the display name. If no section name is specified, then the context
section is used.

includeSubsections: Boolean
If set to true, then the result set includes content items belonging to the subtree of the specified
section as well as the section itself. The default is false.

publication: String
The name of the publication to search for the specified section. The default is the current
publication.

7.3.7 Author
author

Filters the result set by author, where the author to filter on is derived from the context in which the
data source is executed. In other words, this filter returns all content items authored by the current
person. If the current object is a content item rather than a person, then the results returned by author
depend on whether it is the child of an or filter or an and filter. As the child of an or filter it will
return all content items authored by at least one of the current content item's authors. As the child
of an and filter it will return all content items authored by all the current content item's authors. This
filter can only return data when the context object is either a person or a content item. In all other
contexts author will always return 0 results.

The author filter requires both Solr and the CUE Content Store to be correctly configured, or else
it will not work. The specific requirements are:

• The Solr schema (/etc/escenic/solr/solr-core/schema.xml on your Content Store host)
must contain the following field definitions:

<field name="author_id_s" type="string" indexed="true" stored="false"
 multiValued="true" />

This definition is not included in the default editorial and presentation schemas
delivered with the Content Store. After making the change you will need to regenerate the
Solr index. For general information about modifying the Content Store's Solr schemas and re-
indexing, see Modifying The Standard Configuration.

• The types property in the Content Store's index configuration must include the value person.
To add it, open /etc/escenic/engine/common/com/escenic/search/index/

Copyright © 2017-2023 Stibo DX A/S Page 69

http://docs.escenic.com/ece-server-admin-guide/7.3/configuring_the_content_engine.html
http://docs.escenic.com/ece-server-admin-guide/7.3/configuring_the_content_engine.html
http://docs.escenic.com/ece-server-admin-guide/7.3/modifying_the_standard_configuration.html

CUE Front Developer Guide

PresentationIndexConfiguration.properties for editing on your Content Store host,
and add the following setting to the file:

types=section,article,person

The Content Store must then be restarted.

For general information about editing Content Store configuration files, see Configuring The
Content Store.

7.3.8 Type
type(
 name: String
 names: [String!]
)

Returns all content items of a specified type, or of specified types.

Parameters

You must supply either the name parameter or the names parameter, but not both.

name: String
The name of a content type. Only content items of the specified type are returned.

names: [String!]
An array containing the names of content types. Only content items of the specified types are
returned.

7.3.9 Tag
tag(
 tag: String!
)

Returns all content items tagged with a specified tag.

Parameters

The tag parameter is required.

tag: String!
The scheme (internal identifier) of the tag to search for. You must specify the tag's scheme, not
it's display name. The scheme must be preceded by a tag: prefix.

Examples

tag(tag: "tag:tomorrowonline@escenic.com,2017:football")

Returns all content items tagged with a Football tag, identified by the scheme
tomorrowonline@escenic.com,2017:football.

7.3.10 Shared Tags
sharedTags

Copyright © 2017-2023 Stibo DX A/S Page 70

http://docs.escenic.com/ece-server-admin-guide/7.3/configuring_the_content_engine.html
http://docs.escenic.com/ece-server-admin-guide/7.3/configuring_the_content_engine.html

CUE Front Developer Guide

Returns all content items that share one or more tags with the current content item. This filter can only
return data when the context object is a content item, and only if it has tags. If the context item is a
section or if it is a content item with no tags then sharedTags will always return 0 results.

7.3.11 Field
field(
 name: String!
 value: String!
)

Returns all content items where the specified field contains the specified value. Field in this context
has a very specific meaning: it means an indexed Solr field. In order to use this filter effectively you
need to know what is indexed in your Solr schema. The list of available indexed fields may not include
all the fields defined in your content types, and may include fields manufactured by Solr that do not
exist in the content types. In fact, the filter is primarily intended for searching by fields that only exist
in the Solr schema.

Parameters

The name and value parameters are both required.

name: String!
The name of the indexed field to search for.

value: String!
The value to be compared with the contents of the specified field.

Examples

field(name: "video_relation_in_main_b", value: "true")

Returns all content items with a field called video_relation_in_main_b in the Solr index,
which is set to true. In order to use such a filter, you have to know that Solr indexes a field called
video_relation_in_main_b.

7.3.12 Related
related(
 relation: String
 relations: [String!]
 type: String
 types: [String!]
 offset: Int
 count: Int
)

Returns content items related to the current content item. In other words, this filter can only return
data when the context object is a content item. If the context item is a section then related() will
always return 0 results.

Unlike most other data source filters, related() cannot be executed inside an and or or filter. This
is because it is not implemented using Solr like the other filters. related() queries the Content Store
directly.

Copyright © 2017-2023 Stibo DX A/S Page 71

CUE Front Developer Guide

Note the following:

• The datasource() function's sort, offset and count parameters do not work on results
returned by the related() filter.

• When working in the data source query editor, you will probably notice that the related()
filter returns much less information about each result than the other Solr-based filters. This
has no practical consequences. When a saved data source is executed by the datasource()
function in a data retrieval query, the results are returned in the same format irrespective of how
they were displayed in the data source query editor.

Parameters

If no parameters are specified, then related() returns all content items related to the current
content item. The scope of the filter can be narrowed by specifying parameters. The relation and
relations parameters are mutually exclusive: you are only allowed to specify one of them. The type
and types parameters are also mutually exclusive.

relation: String
The name of a relation. Only related items belonging to the specified relation will be returned.

relations: [String!]
An array containing the names of relations. Only related items belonging to the specified
relations will be returned. The sequence in which relations are specified is reflected in the order
of the results.

type: String
The name of a content type. Only related items of the specified type will be returned.

types: [String!]
An array containing the names of content types. Only related items of the specified types will be
returned. The sequence in which types are specified is reflected in the order of the results.

offset: Int
An offset to be applied to the initial result set. If the initial result set contains 4 results and you
specify an offset of 1, then the first result will be omitted, leaving a final result set of 3.

count: Int
A size limit to be applied to the initial result set. If the initial result set contains 4 results and you
specify a count of 2, then only the first two results will be included.

Examples

All these examples assume that the current content item has a stories relation containing 3 items (a,
b and c) and a media relation containing 2 items (d and e)

related(relations: ["stories", "media"])

Returns a, b, c, d and e.

related(relations: ["media", "stories"])

Returns d, e, a, b and c.

related(relations: ["stories", "media"], offset: 1)

Returns b, c, d and e.

Copyright © 2017-2023 Stibo DX A/S Page 72

CUE Front Developer Guide

related(relations: ["stories", "media"], count: 2)

Returns a and b.

related(relations: ["stories", "media"], offset: 1, count: 2)

Returns b and c.

related(relation: "stories", offset: 1)
related(relation: "media", offset: 1)

Returns b, c and e.

The purpose of the related() filter

You may wonder why the related() filter has been implemented as part of data sources: it doesn't
work in the same way as other data source filters (using Solr), and it can't be combined with them
using and, or or not. Moreover, you can easily access a content item's relations from a content
retrieval query, so why is it needed?

The related() filter allows you to access a content item's relations in a more flexible way than is
possible by following the relations in a content retrieval query. You can use it, for example, to construct
a list of related content items drawn from a sequence of relations: if the first relation is empty or
doesn't contain enough content items, then the next relation in the list is used, and so on.

7.3.13 WithRelationToMe
withRelationToMe(
 type: String
)

Returns all content items that have a relation pointing to the context content item (the reverse of the
search performed by the related() filter).

Parameters

type: String
The type of relation to search for. If specified, then only content items that have the specified
type of relation will be returned. Otherwise, all content items with relations pointing to the
context content item are returned, irrespective of type.

Examples

withRelationToMe()

Returns all content items with a relation pointing to the context content item.

withRelationToMe(type: "relatedMedia")

Returns all content items with a relatedMedia relation pointing to the context content item.

7.3.14 WithRelationTo
withRelationTo(
 contentItem: Int!

Copyright © 2017-2023 Stibo DX A/S Page 73

CUE Front Developer Guide

 type: String
)

Returns all content items that have a relation pointing to the specified content item.

Parameters

contentItem: Int!
The content item from which to search, specified by ID (that is, Content Store internal ID).

type: String
The type of relation to search for. If specified, then only content items that have the specified
type of relation will be returned. Otherwise, all content items with relations pointing to specified
content item are returned, irrespective of type.

Examples

withRelationTo(contentItem: 45)

Returns all content items with a relation pointing to the content item with the Content Store internal
ID 45.

withRelationTo(contentItem: 45, type: "relatedMedia")

Returns all content items with a relatedMedia relation pointing to the content item with the
Content Store internal ID 45.

Copyright © 2017-2023 Stibo DX A/S Page 74

CUE Front Developer Guide

8 Working with the Recipe

The Cook is responsible for retrieving all the data required to build a publication web page. In order to
carry out this job, the Cook follows a recipe. The default recipe delivered with a demo publication is a
very small Javascript file, publication/recipe/recipe.js.

The reason the recipe is so small is that all the recipe functionality is actually provided by recipe
extensions. The extensions are Javascript modules included by the recipe, most of which are
downloaded from Stibo DX's NPM server, npm.escenic.com. The extensions that need to be
downloaded from npm.escenic.com are listed in the file publication/recipe/package.json
along with various other Javascript dependencies.

The recipe is responsible for:

• Retrieving data from all back-end systems: the Content Store, the Solr server plus any other
external systems used by your application

• Filtering and organizing the retrieved data to produce the final JSON data structure delivered to the
Waiter.

Much of the recipe's work is done by GraphQL queries, and therefore a great deal of customization
work can be done using GraphQL (see section 4.2) and data sources (see chapter 7). At many
installations, the recipe itself will never need to be modified.

You may in some cases need to modify the behavior of a recipe extension by setting a configuration
parameter. For information on how to do this, see section 8.1.

Larger customizations may require changes to the recipe, for example:

• Retrieving data from external systems: you might need to get sports results or weather data
from an external web service.

• Restructuring the output JSON data: your Waiter might be an existing front end system
that requires the JSON data to be supplied in a predefined format. GraphQL supports simple
modifications to the output structure, such as omitting elements and renaming, but not complex
reorganization.

Such changes can usually be made by writing your own extension.

Finally, you may sometimes need to make modifications to the Cook's final response, immediately
before it is delivered to the Waiter. You cannot do this by writing an extension, because the GraphQL
query is run inside the cue-front-extension-run-default recipe extension, which is always
executed last. It is not possible to run another extension after cue-front-extension-run-
default. You could in theory modify cue-front-extension-run-default itself, but this would
complicate upgrades, since you would then have to merge your modifications every time a new version
of cue-front-extension-run-default was released. The recommended method, therefore, is to
make your modifications in recipe.js itself, as described in section 8.5.

Copyright © 2017-2023 Stibo DX A/S Page 75

CUE Front Developer Guide

8.1 Configuring Recipe Extensions
Recipe extensions can expose configuration parameters that are set in the Cook's configuration file,
cook-config.yml. Most of the default extensions supplied by Stibo DX (the ones downloaded from
npm.escenic.com) have very few configuration parameters, and where necessary, the setup tool
ensures that they are supplied with sensible values. You may, however, need to modify some of the
defaults set by the setup tool or add some additional settings of your own.

If you do need to configure a recipe extension, you can do so by creating a cook-config.yaml
override file in your publication repository, as described in section 13.6, and adding the necessary
parameter settings to it.

For information about all the configuration parameters exposed by the default extensions, check the
readme files on http://npm.escenic.com/. You will, for example, find information about the cue-
front-extension-binary extension at http://npm.escenic.com/#/detail/@escenic/cue-front-
extension-binary.

Reasons for needing to configure a recipe extension include:

• Support for image content types that are not called picture (see section 8.1.1)

• Support for custom story element types (see section 8.1.2)

• Changing the default URL-GraphQL query mappings (See section 8.1.3)

8.1.1 Configuring Image Content Types

By default, the cue-front-extension-image extension is configured to assume that:

• Content items of the type picture contain images

• The image's crop definitions are store in a content item field called alternates.

This is the case for the tomorrow-online demo publication, so it works out of the box. If it is not the
case for your publication, then you will need to reconfigure it. To do so, add something like this to the
cook-config.yaml override file in your publication repo:

recipedata:
 extensions:
 - name: '@escenic/cue-front-extension-image'
 config:
 representations:
 photo: crops

This configuration specifies that:

• Content items of the type photo contain images

• The image's crop definitions are store in a content item field called crops.

You might actually have several content types that contain images, in which case you will need to add
several entries under representations:

recipedata:
 extensions:
 - name: '@escenic/cue-front-extension-image'
 config:

Copyright © 2017-2023 Stibo DX A/S Page 76

http://npm.escenic.com/
http://npm.escenic.com/#/detail/@escenic/cue-front-extension-binary
http://npm.escenic.com/#/detail/@escenic/cue-front-extension-binary

CUE Front Developer Guide

 representations:
 photo: crops
 image: crops
 map: crops

Note that the cue-front-extension-image's endpoint parameter should not be included in
the override file: this is set by the setup tool, ensuring consistency with other endpoint settings in the
configuration files.

8.1.1.1 Configuring Representation Filters

You can also optionally configure the cue-front-extension-image extension to apply filters to
your image representations by adding a filters section to its configuration. This section allows you
to associate sequences of image filters with representation names. The specified filter sequences will
then be applied by the Cleaver. A filters section looks something like this:

recipedata:
 extensions:
 - name: '@escenic/cue-front-extension-image'
 config:
 ...
 filters:
 default:
 - webp
 PORTRAIT_SMALL:
 - webp
 - rotate90

The default entry applies the webp filter to all image representations that do not match any other
name in the filters list. The PORTRAIT_SMALL entry applies both the webp and the rotate90
filters to image representations with the name PORTRAIT_SMALL. You can use the wildcard *
character to apply filters to groups of representations (PORTRAIT_*, for example, would apply its filter
list to any representations starting with the characters PORTRAIT_.

In order for this to work, your Cleaver must be configured to provide filters called webp and
rotate90. For more information about this, see section 12.2.1.

8.1.2 Configuring Story Element Types

A number of default story element types are delivered with the Content Store, and the cue-front-
extension-storyline recipe extension is configured to support all of these out of the box.
If, however, you add your own story element types, then you may need to add corresponding
configurations to the cook-config.yaml override file in your publication repo. You only need to do
this for story element types that contain links to related content items (such as the default image story
element type).

By default, cue-front-extension-storyline is configured as follows:

recipedata:
 extensions:
 - name: @escenic/cue-front-extension-storyline
 config:
 extendType: "Storyline"
 relation-elements:
 internal_link: relation
 relation: relation

Copyright © 2017-2023 Stibo DX A/S Page 77

CUE Front Developer Guide

 image: relation

the highlighted entries configure the extension to expect internal_link, relation and image
story element types to contain links to content items. If you have created a story element type of your
own called my_link that contains links to content items, then you would need to add this to the
cook-config.yaml override file in your publication repo:

recipedata:
 extensions:
 - name: @escenic/cue-front-extension-storyline
 config:
 relation-elements:
 my_link: relation

The default configuration of cue-front-extension-storyline only supports one storyline
content type, called Storyline. You might, however, want to create other storyline content types (a
longform storyline, for example), for which different templates and so on are used. The extendType
field in the cue-front-extension-storyline config file can be used as an array, making
this possible. To add a Longform content type, you would need to add the following to the cook-
config.yaml override file in your publication repo:

recipedata:
 extensions:
 - name: @escenic/cue-front-extension-storyline
 config:
 extendType:
 - "Storyline"
 - "Longform"

8.1.3 Configuring URL-GraphQL query mappings

The GraphQL query that is executed to retrieve content for any given URL is determined by the cue-
front-extension-path-mapper recipe extension. cue-front-extension-path-mapper does
this by applying mapping rules specified in cook-config.yaml.

By default, cook-config.yaml contains the following mapping rules:

 - name: @escenic/cue-front-extension-path-mapper
 config:
 directory: "esi"
 criteria:
 match: '\.esi\/([a-zA-Z0-9-]+)'
 base-name: "$1"
 lookup:
 - BASE
 - name: @escenic/cue-front-extension-path-mapper
 config:
 directory: "."
 lookup:
 - TYPE-SECTION
 - TYPE

These rules basically say:

• The response for any URL that starts with the string .esi/ will be generated by the query called
esi/base-name.graphql where base-name matches the URL segment identified by $1 (in this

Copyright © 2017-2023 Stibo DX A/S Page 78

CUE Front Developer Guide

case, the remainder of the URL – so long as it only contains alphanumeric characters and hyphens).
This rule is using the BASE lookup algorithm.

• The response for any other URL will be generated according to the rules described in section 4.2.3,
using the TYPE-SECTION and TYPE lookup algorithms.

cook-config.yaml may contain as many of these mapping rules as you need. The rules are applied
in the order they are defined in cook-config.yaml, and the first rule to match a URL is used. The
same applies when multiple lookup algorithms are applied within a single rule as in the second rule
above: the first algorithm to get a match wins.

For a full description of all the available cue-front-extension-path-mapper lookup algorithms
and how to use them, see the cue-front-extension-path-mapper README file.

8.2 Making a Recipe Extension
A recipe extension is a node module that can be called by the Cook's recipe, and provides some specific
functionality to the recipe. The extensions are loaded by the ExtensionLoader object. A recipe
extension must export an extension object that exposes the following methods and properties to the
recipe:

constructor(config, context)
The constructor creates and initializes the extension object. ExtensionLoader passes in two
parameters to the constructor:

config
Configuration values (if any) for this extension.

context
The context object, an object containing information about the current request. For
details see section 8.2.2.

This method is required.

extendSchema(assembler, model)
This method can be used to add extensions to the GraphQL schema (for retrieving data from
an external web service, for example). ExtensionLoader passes in two parameters to this
method:

assembler
The SchemaAssembler object.

model
The CUE Front GraphQL model.

This method is optional. Use it if you want your extension to extend or modify the GraphQL
schema.

priority: number
Determines when this extension is executed by the recipe (that is, when its run() method
is called). All extensions may be assigned a priority, which determines their position in the
execution order. Extensions are executed in the following order:

1. From the highest priority (that is, the lowest number) to the lowest priority (that is, the
highest number). In other words, priority: 10 is higher than priority: 20 and will
be executed first.

Copyright © 2017-2023 Stibo DX A/S Page 79

https://npm.escenic.com/#/detail/@escenic/cue-front-extension-path-mapper

CUE Front Developer Guide

2. All unprioritized extensions are executed in alphabetical order.

Should more than one extension be assigned the same priority, then they are executed in
alphabetical order.

Priority can also be specified in the configuration file. A priority specified in the
configuration file will take precedence over the value specified via this property.

This property is optional. Use it if you want the recipe to be able to control when your
extension is executed.

pattern: string
A regular expression for testing resolvedRemainingPath. resolvedRemainingPath
is a property of the context object, and is the last part of the original request URL that has
not yet been resolved by any other recipe extension. If pattern is specified, then it is used
to test the resolvedRemainingPath, and the extension's run() method is only executed
if resolvedRemainingPath matches the regular expression. If run() is successfully
executed, then the matched part of the resolvedRemainingPath is regarded as resolved and
removed from the resolvedRemainingPath. If pattern is not specified then no such test is
performed before executing the extension's run() method.

This property is optional. Use it if you want your extension to be triggered by a component in
the request path.

constraint(context): boolean
This method can be used to enforce additional constraints on the execution of the extension.
You can use it, for example, to limit the extension so that it is only used for a specific content
type. If a constraint() method is specified and returns false, then the extension's run()
method will not be executed. ExtensionLoader passes in one parameter to this method:

context
The context object, an object containing information about the current request. For
details see section 8.2.2.

This method is optional. Use it if you want to constrain the circumstances in which your
extension is used.

run(recipe, context, done)
This method actually executes the extension's functionality. It must return its results via the
done callback function to enable asynchronous communication. ExtensionLoader passes in
three parameters to this method:

recipe
The recipe object itself, created in recipe.js. For a detailed description of the recipe
object, see section 8.2.1.

context
The context object, an object containing information about the current request. For
details see section 8.2.2.

done
The callback method to be used for returning the extension's results. If the method
does not need to return any actual results (if, for example, the extension's purpose is
just to modify the context object in some way) then it must return done(true) to
indicate successful execution, or done(false) in the case of failure. If a result set or
done(true) is returned, then ExtensionLoader will call the next extension.

This method is required.

Copyright © 2017-2023 Stibo DX A/S Page 80

CUE Front Developer Guide

8.2.1 The Recipe Object

The supplied recipe.js creates a valid recipe object for you. If you are not using the supplied
recipe.js and are creating the recipe object in some other way, it needs to have the following
properties:

log
A Bunyan logger object.

config
An object containing the configuration parameters needed by the extension. By default, this
object is created by loading the entries for this extension from the recipedata/extensions
section of the cook-config.yaml file.

assembler
A new @escenic/cue-front-graphql/SchemaAssembler object, that has been initialized
and populated with a base schema model.

assemblerModel
An @escenic/cue-front-graphql/model object.

queryLoader
An @escenic/cue-front-query-loader object, initialized with the base queries for the
recipe.

8.2.2 The Context Object

The context object is constructed by the ExtensionLoader. It has the following properties:

request
A request object containing information about the current HTTP request.

log
A Bunyan logger object.

config
An object containing the configuration parameters needed by the extension. By default, this
object is created by loading the entries for this extension from the recipedata/extensions
section of the cook-config.yaml file.

cook
The CUE Front Cook.

schema
The assembled GraphQL schema object.

model
The model type for the current request.

query
An object with the name, GraphQL query string and path of the request.

resolvedRemainingPath
The remaining part of the request URL that has not yet been resolved.

Only the request needs to be set by recipe.js. All the other properties of the context object can be
derived from the recipe object.

Copyright © 2017-2023 Stibo DX A/S Page 81

CUE Front Developer Guide

8.2.3 Extension Configuration

The extension and its location must be declared in the recipedata/extensions section of the
cook-config.yaml file. For example:

recipedata:
...
 extensions:
 ...
 - name: 'path-to/my-cue-front-extension'
...

The declaration must include either a name or a path parameter(or both), and one of them must
specify the path of the extension (either a single file or a folder containing the extension files).If you
specify both parameters, then path should contain the path, and name should contain just the name.
For example:

recipedata:
...
 extensions:
 ...
 - name: 'my-cue-front-extension'
 path: 'path-to/my-cue-front-extension'
...

If you register your extension as an NPM module, then you will not need to specify a path – the name
(including an optional scope prefix) is sufficient information for NPM to locate your extension. For
more about this, see the NPM documentation.

If you need to control the order in which your extension is executed, then you can do so by specifying a
numeric priority parameter:

recipedata:
...
 extensions:
 ...
 - name: 'my-cue-front-extension'
 path: 'path-to/my-cue-front-extension'
 priority: 10
...

Extensions with a priority setting are executed first, in priority order (low number to high number),
followed by all unprioritized extensions (in alphabetic order). None of the default extensions are
prioritized by default.

In addition to name, path and priority you can optionally add a config property. You can include
any configuration properties you like as children of the config property. For an extension intended to
retrieve data from an external web service, for example, you would probably want to add a property for
specifying the web service URL:

recipedata:
...
 extensions:
 ...
 - name: 'my-cue-front-extension'
 path: 'path-to/my-cue-front-extension'
 priority: 10

Copyright © 2017-2023 Stibo DX A/S Page 82

https://docs.npmjs.com/files/package.json

CUE Front Developer Guide

 config:
 result-service-url: 'http://my-result-service.com/'
...

8.3 Recipe Extension Tutorial
This tutorial provides a step-by-step guide to building a simple recipe extension. Before you start,
make sure that you have a correctly installed CUE Front start pack and demo publication (Tomorrow
Online) that you can work with.

8.3.1 Creating the Recipe Extension

If you haven't created any recipe extensions before, the the first thing you need to do is to create a
folder to hold your extensions. CUE Front doesn't insist on any particular location, but it's a good idea
to keep them in the recipe folder, so create an extensions folder there:

cd path/cue-front
mkdir recipe/extensions/

Create a file called tutorial.js in the new folder:

touch recipe/extensions/tutorial.js

and open it in a text editor. For example:

nano recipe/extensions/tutorial.js

Paste the following code into the file and save it:

exports.pattern = '/?hello';
exports.run = function(recipe, context, done) {
 done({entity: { "Hello": "world"}});
};

All this extension does is:

• Supply a regular expression in exports.pattern.

• Supply a function to be executed in exports.run.

The recipe uses exports.pattern to test the resolvedRemainingPath variable, and if it
matches, executes the function supplied with exports.run. The function in our extension terminates
the recipe execution and supplies the value {entity: { "Hello": "world"}} for the recipe to
return to the Cook.

The pattern /?hello is used in order to match the string /hello both at the end of a section
URL such as http://localhost:8101/tomorrow-online/hello and at the end of a story
URL such as http://localhost:8101/tomorrow-online/politics/2017-11-29/
Where-will-winding-up-Westminster-lead-1754.html/hello. When the resolver
parses a URL, it treats / characters as "belonging to" sections and removes them from the
resolvedRemainingPath. So for the URL http://localhost:8101/tomorrow-online/
hello, the resolver will leave just hello in resolvedRemainingPath, while for http://
localhost:8101/tomorrow-online/politics/2017-11-29/Where-will-winding-up-

Copyright © 2017-2023 Stibo DX A/S Page 83

CUE Front Developer Guide

Westminster-lead-1754.html/hello it will leave /hello in resolvedRemainingPath.
The pattern /?hello matches both hello and /hello, and will therefore catch both occurrences.

8.3.2 Configuring Docker

By default, the Cook will not be able to access your new extension because it runs in a Docker
container, and only has access to files and folders that are explicitly mounted inside that container. To
make Docker mount your extensions folder:

1. Open docker-compose.yml in a text editor.

2. Search for the following line:

 #- ./recipe/extensions:/srv/recipe/extensions:ro

3. Remove the # comment marker at the start of the line. Make sure that the hyphen at the start of
the resulting line is indented the same amount as the lines above and below.

4. Save the file.

The next time you restart the container, the /recipe/extensions folder will be available inside the
Cook's container as /srv/recipe/extensions.

8.3.3 Configuring the Cook

Your extension will now be available inside the Cook's container the next time it is started, so the
next step is to tell the Cook to include the extension in it's recipe. You do this by modifying the Cook
configuration file, cook-config.yml. The cook-config.yml used by the Cook is one you have
generated with the setup utility. If, for example, you created a configuration set called myconfig
when installing CUE Front, then the Cook will be using a configuration file called setup/myconfig/
cook-config.yml. You could, in theory, edit this file directly, but it is not a good idea to do so
because if you did so then your changes would be lost if you later modified your configuration set using
setup.

The recommended way to make this change is to edit the default cook-config.yml (setup/
defaults/cook-config.yaml) and then use setup to regenerate your configuration set:

1. Open setup/defaults/cook-config.yaml in a text editor.

2. Search for:

recipedata:

Then under recipedata look for the indented subentry

 extensions:

3. Under extensions you will see a long list of extension declarations starting with - name. Add
your extension to the bottom of this list:

 - name: @escenic/cue-front-extension-notfound
 - name: @escenic/cue-front-extension-binary
 - name: "/srv/recipe/extensions/tutorial"

Note that the path of your extension is different from the path of the built-in extensions. The
built-in extensions are downloaded from Stibo DX's NPM server, whereas your extension is
loaded from the Cook container's file system.

Copyright © 2017-2023 Stibo DX A/S Page 84

CUE Front Developer Guide

4. Regenerate your configuration set using the modified defaults:

cd cue-front-path/setup
docker-compose run --rm setup generate myconfig

5. Restart the CUE Front containers:

cd cue-front-path/myconfig
docker-compose down
docker-compose up -d

8.3.4 Testing and Debugging

You should now have a working extension, which you can test by visiting the Cook's endpoint
(localhost:8101/tomorrow-online/)in a browser or using curl in a terminal window:

curl http://localhost:8101/tomorrow-online/

should return the normal JSON output for the Tomorrow Online front page, but

curl http://localhost:8101/tomorrow-online/hello

should return just {Hello: "world"}.

The same thing should happen if you visit a story page:

curl http://localhost:8101/tomorrow-online/politics/2017-11-29/Where-will-winding-up-
Westminster-lead-1754.html

and then append /hello to the URL:

curl http://localhost:8101/tomorrow-online/politics/2017-11-29/Where-will-winding-up-
Westminster-lead-1754.html/hello

8.3.5 Restricting the Extension's Scope

The scope of the tutorial extension is currently unlimited: it responds to /hello at the end of any
Tomorrow Online URL – even an invalid one that would return "page not found" without the /hello
suffix.

It is possible, however, to limit the extension's scope, so that it only responds to /hello in certain
contexts. You might, for example, only want the extension to respond for URLs in the publication's
Sports section. To do this you need to add a constraint to the exports object in your tutorial.js
extension, as follows:

exports.pattern = '/?hello';
exports.constraint = function(context) {
 const resolution = context.request.resolution.entity;
 return resolution.section == 'sport';
};
exports.run = function(recipe, context, done) {
 done({entity: { "Hello": "world"}});
};

Visiting http://localhost:8101/tomorrow-online/hello or http://localhost:8101/
tomorrow-online/politics/2017-11-29/Where-will-winding-up-Westminster-

Copyright © 2017-2023 Stibo DX A/S Page 85

CUE Front Developer Guide

lead-1754.html/hello will now return { error: "Page not found!" }. Appending /hello
to a URL in the Sports section, however, such as:

curl http://localhost:8101/tomorrow-online/sport/hello

or

curl http://localhost:8101/tomorrow-online/sport/2017-11-29/Four-miss-Englands-trip-
to-Italy-1718.html/hello

will trigger the extension and return { Hello: "world" }.

If you only want the extension to be triggered for section pages (i.e http://localhost:8101/
tomorrow-online/sport/hello) and not for actual stories such as http://localhost:8101/
tomorrow-online/sport/2017-11-29/Four-miss-Englands-trip-to-
Italy-1718.html/hello, you can do so by adding a resolution.context condition to the
constraint as follows:

exports.constraint = function(context) {
 const resolution = context.request.resolution.entity;
 return resolution.section == 'sport' && resolution.context == 'sec';
};

This limits the extension to section pages only. If you want to limit it to content items only then you
need to specify && resolution.context == 'art'; instead.

8.3.6 Parsing the URL

So far, the tutorial.js extension has just used a simple URL suffix (hello) as a mechanism
to trigger the extension. You can, however, also allow the extension to be triggered by a range of
different suffixes that match a specified pattern. In such cases, you will then often want to parse the
suffix in order to extract specific values from it, so that you can use them for some purpose. A regular
expression like this:

^/?([a-z]{2})/([0-9]{2})$

does both these things:

• It matches any string consisting of an optional / followed by two lower case characters followed by
a / followed by two digits. So it will match ab/12 or gc/23 or /fl/93 but not foo/12 or a3.

• The brackets around [a-z]{2} and [0-9]{2} mean that a regular expression engine will return
the values that match those parts of the expression as separate values.

So a more sophisticated version of tutorial.js can take advantage of this possibility as follows.
First, change exports.pattern to use this more complex regular expression:

exports.pattern = '^/?([a-z]{2})/([0-9]{2})$';

Then insert an extra line to keep a copy of the regular expression:

const pattern = new RegExp(exports.pattern);

Now, in the exports.run function, test the remaining path (which is available as
context.resolvedRemainingPath) against the saved regular expression:

Copyright © 2017-2023 Stibo DX A/S Page 86

CUE Front Developer Guide

 const items = pattern.exec(context.resolvedRemainingPath);

This will return an array of values to items. If the string matches the pattern (and we know in this
case that it always will, since otherwise the exports.run function would never be called), the first
element of the array (items[0]) will contain the entire matched string and the following elements
will contain substrings matched by bracketed segments of the regular expression. So for /fl/93,
items[1] will contain fl and items[2] will contain 93. This means you can return these values in
the extension's output as follows:

 done({entity: {"letters": items[1], "digits": parseInt(items[2])}});

Here is the new improved version of tutorial.js:

exports.pattern = '^/?([a-z]{2})/([0-9]{2})$';

const pattern = new RegExp(exports.pattern);

exports.constraint = function(context) {
 const resolution = context.request.resolution.entity;
 return resolution.section == 'sport' && resolution.context == 'sec';
};

exports.run = function(recipe, context, done) {
 const items = pattern.exec(context.resolvedRemainingPath);
 done({entity: {"letters": items[1], "digits": parseInt(items[2])}});
};

If you now visit your publication's /sport/ab/05 page:

curl http://localhost:8101/tomorrow-online/sport/ab/05

you should get the response:

{
 letters: "ab",
 digits: 5
}

8.3.7 Passing on the Request

A recipe is composed of many different extensions, which are executed in sequence. The order in which
they are executed is determined by priority. Most extensions do not have an explicitly set priority,
and are therefore executed in the order they appear in recipe/package.json.

cue-front-extension-run-default and cue-front-extension-not-found, however, are
exceptions to this rule:

• cue-front-extension-run-default has a priority of 98 and runs second to last.

• cue-front-extension-not-found has a priority of 99 and runs last.

cue-front-extension-run-default is the extension that runs the GraphQL query selected for
the current page request. If and only if resolvedRemainingPath is empty, it runs the GraphQL
query, returns the results and terminates the request. Otherwise, it passes the request forward to cue-
front-extension-not-found, which returns a "page not found" message and terminates the
request.

Copyright © 2017-2023 Stibo DX A/S Page 87

CUE Front Developer Guide

Assuming you added tutorial.js to the end of the extension list in recipe/package.json, then
it will be executed as the last of all the unprioritized extensions, immediately before cue-front-
extension-run-default.

A context object containing information about the request is passed forward through all the
extensions. Extensions may add information to it, but should not remove or modify anything. In this
way all extensions have the ability to pass information downstream.

Currently, however, tutorial.js does not add any information to the context object. Instead, if it
is triggered, it terminates the request. This call to done():

 done({entity: {"letters": items[1], "digits": parseInt(items[2])}});

terminates the recipe's processing of the request and supplies an object to return to the Cook. The
content of the returned object's entity field becomes the Cook's response to the request. You can also
add headers to the response by including a headers field in the returned object:

 done({entity: {"letters": items[1], "digits": parseInt(items[2])}, "headers":{test:
 "abc"});

Terminating the request in this way may sometimes be what you want your extension to do, but often
you don't want to replace the standard response, you just want to pass some information forward in
order to influence how the request is processed by following extensions. You can, for example, add
GraphQL parameters to the context object. cue-front-extension-run-default will pass any
GraphQL parameters it finds in the context object to the GraphQL queries it executes.

If you don't want your extension to terminate the request, then instead of passing an object to the
done() function, simply pass the value true:

 done(true);

The request's context object will then be passed on to the next extension, including any additions you
have made.

8.3.8 Setting GraphQL Parameters

To make your extension pass parameters to the GraphQL query selected for the current page request,
your extension's exports.run function must:

• Add the parameter definitions to context.graphqlParams.

• Pass true to the done() function so that the request is not terminated.

Preceding extensions may already have added parameters to context.graphqlParams, so you must
be careful to not overwrite them. Here is a new version of the exports.run function that passes the
letters and digits values as GraphQL parameters:

exports.run = function(recipe, context, done) {
 const items = pattern.exec(context.resolvedRemainingPath);
 context.graphqlParams = context.graphqlParams || {};
 context.graphqlParams.letters = items[1];
 context.graphqlParams.digits = parseInt(items[2]);
 done(true);
};

Copyright © 2017-2023 Stibo DX A/S Page 88

CUE Front Developer Guide

If you now visit your publication's /sport/ab/05 page you will see the standards Sports section page
contents again, but the context object that is passed forward to following extensions now contains at
least two GraphQL parameters: a string parameter called letters with the value ab, and an integer
parameters called digits with the value 5.

To be used in a GraphQL query, parameters must be declared at the start of the query:

query($letters: String!, $digits: Int) {
 ...
}

The query keyword that identifies the root of a GraphQL query is often omitted, but you must
specify it when declaring parameters.

Once the parameters are declared in this way, they can be used in the body of the query – for example,
passed on to a data source as follows:

query($letters: String!, $digits: Int) {
 ...
 datasource(name: $letters, count: $digits) {
 displayId
 }
 ...
}

In this example, if the incoming request URL is http://localhost:8101/tomorrow-online/
sport/ab/12, then the query will call a data source called ab with a count parameter of 12. if the
incoming request URL is http://localhost:8101/tomorrow-online/sport/cd/05, then the
query will call a data source called cd with a count parameter of 5.

8.3.8.1 Dealing With Non-null Parameters

Note that the $letters parameter type is specified as String! rather than String. The ! character
means that the parameter is not allowed to be null. $letters must be defined as String! because
the place where we want to use it (the datasource() function's name parameter) is defined as a
String!.

The ! symbol can be used in combination with all GraphQL type declarations to indicate that null
values are not allowed.

If a GraphQL query parameter is defined as not null, then a value must be supplied or the query will
fail with a message like this:

Variable "$letters" of required type "String!" was not provided.

This presents a problem: if you make the above changes to your existing Sports page GraphQL query,
then it will work fine when users visit the sport/ab/12 page, but when users visit the sport page it
will fail with the above error because the extension hasn't run. You can fix this problem as follows:

1. Change exports.pattern so that the extension is run for both the sport/ab/12 page (and
other similar URLs) and for the sport page:

exports.pattern = '^$|^/?([a-z]{2})/([0-9]{2})$';

(The ^$ at the beginning of the regular expression matches an empty string in the remaining
path.)

Copyright © 2017-2023 Stibo DX A/S Page 89

CUE Front Developer Guide

2. Change the exports.run function so that context.graphqlParams.letters and
context.graphqlParams.digits get set even if the remaining path is empty:

 context.graphqlParams.letters = items[1] || "ab";
 context.graphqlParams.digits = parseInt(items[2]) || 0;

Now the GraphQL $letters and $digits parameters will always be assigned values and the
GraphQL query will therefore be executed. Here is what tutorial.js looks like after these changes:

exports.pattern = '^$|^/?([a-z]{2})/([0-9]{2})$';

const pattern = new RegExp(exports.pattern);

exports.constraint = function(context) {
 const resolution = context.request.resolution.entity;
 return resolution.section == 'sport' && resolution.context == 'sec';
};

exports.run = function(recipe, context, done) {
 const items = pattern.exec(context.resolvedRemainingPath);
 context.graphqlParams = context.graphqlParams || {};
 context.graphqlParams.letters = items[1] || "ab";
 context.graphqlParams.digits = parseInt(items[2]) || 0;
 done(true);
};

8.3.9 Providing an Alternate GraphQL Query

Instead of just passing parameters to the GraphQL query associated with the resolved request, you can
make your extension replace it with a completely different query. This can be useful, for example, in
situations where the URLs captured by your extension are used to power Ajax calls that only need to
modify the displayed page.

The request's default GraphQL query is held in the context.query object. Your extension can
therefore force a different query to be used by replacing this object (actually replacing it, not
modifying it). For example:

const myQuery = {
 query : `query($letters: String!, $digits: String!) {resolution {
 section {
 my_text: _static(value:$letters)
 my_number: _static(value:$digits)
 }
}
}`
 };

exports.run = function(recipe, context, done) {
 const items = pattern.exec(context.resolvedRemainingPath);
 context.graphqlParams = context.graphqlParams || {};
 context.graphqlParams.letters = items[1] || "ab";
 context.graphqlParams.digits = items[2] || "0";
 context.query = myQuery;
 done(true);
};

Copyright © 2017-2023 Stibo DX A/S Page 90

CUE Front Developer Guide

If you do this, you then probably don't want your extension to capture requests to the main Sports page
so the pattern should ignore the empty string again:

exports.pattern = '^/?([a-z]{2})/([0-9]{2})$';

Here is the complete modified extension:

const myQuery = {
 query : `query($letters: String!, $digits: String!) {resolution {
 section {
 my_text: _static(value:$letters)
 my_number: _static(value:$digits)
 }
}
}`
 };

exports.pattern = '^/?([a-z]{2})/([0-9]{2})$';

exports.constraint = function(context) {
 const resolution = context.request.resolution.entity;
 return resolution.section == 'sport' ;
};

exports.run = function(recipe, context, done) {
 const items = pattern.exec(context.resolvedRemainingPath);
 context.graphqlParams = context.graphqlParams || {};
 context.graphqlParams.letters = items[1] || "ab";
 context.graphqlParams.digits = items[2] || "0";
 context.query = myQuery;
 done(true);
};

Now, the normal Sports section query is run for http://localhost:8101/tomorrow-online/
sport/ requests, but the replacement query is run for URLs such as http://localhost:8101/
tomorrow-online/sport/ab/12 or http://localhost:8101/tomorrow-online/sport/
cd/34.

8.3.10 Parsing Request Parameters

In some cases you may want your extension to extract information not from the request URL itself, but
from parameters supplied with the URL such as .../?order=newest.

The Cook doesn't automatically parse these parameters for you, and they don't get passed
forward in context.resolvedRemainingPath. They are, however, available in
context.request.incoming.url. This property contains the full URL submitted to the Cook,
which will look something like this:

/tomorrow-online/sport/?param1=value1¶m2=value2

You can therefore use standard query parsing techniques to parse the string. As when parsing the
URL itself you can use the exports.constraint function to guard against malicious or invalid data
in the supplied parameters, only accepting parameters that match strictly specified conditions. The
following function, for example, only accepts an order parameter that has a value of either newest or
relevant. No other parameters are accepted.

Copyright © 2017-2023 Stibo DX A/S Page 91

CUE Front Developer Guide

exports.constraint = function(context) {
 const mark = context.request.incoming.url.indexOf("?");
 const params = (mark == -1) ? {} :
 querystring.parse(context.request.incoming.url.substring(mark + 1));
 if (order in params == false || [undefined, 'relevant',
 'newest'].indexOf(params.order) == -1) {
 return false;
 }
};

Bear in mind that the exports.constraint function runs for all requests and that its purpose is to
determine whether or not the exports.run function should be executed. First, it grabs the request
string and splits it at the ? character (if present) into a URL path and a series of query parameters,
which it parses and stores in the params object.

 const mark = context.request.incoming.url.indexOf("?");
 const params = (mark == -1) ? {} :
 querystring.parse(context.request.incoming.url.substring(mark + 1));

It then checks params.order. Unless it is undefined or contains one of the two allowed values, the
function returns false and exits, ensuring that exports.run is not executed:

 if ([undefined, 'relevant', 'newest'].indexOf(params.order) == -1) { return false; }

If params.order is defined with a legal value, then it can be used in the same ways as values
extracted from context.resolvedRemainingPath:

• Returned in the done object's entity field

• Added to the context object for use by following extensions

8.4 Upgrading Recipe Extensions
The starter publications provided by Stibo DX (such as tomorrow-online and starter-
publication) include a default recipe, recipe/recipe.js. Most of the recipe functionality,
however, is provided by recipe extensions. The recipe extensions provided by Stibo DX are published
on an NPM server, npm.escenic.com and are downloaded from npm.escenic.com the first time
they are required (that is, the first time the recipe is executed).

Each extension published on npm.escenic.com is separately maintained and has its own version
number. As corrections and improvements are made to an extension, new versions may be published.
This will not, however, have any effect on your publications, since your recipe depends on a specific
version of each extension, specified in the file recipe/package.json. If you upgrade your CUE
Front installation, you will get new versions of the Cook, Cleaver and so on, but the recipe will not
be upgraded. The recipe is part of your application: you may well have made changes to recipe/
package.json (added extensions of your own, for example) that should not be overridden.

In order to upgrade recipe extensions, therefore, you must explicitly require new versions by editing
recipe/package.json yourself. In order to be able to do this, you need to know which recipe
extensions have been upgraded and what changes have been made. You can upgrade recipe extensions
in two ways:

• As part of general CUE Front upgrades

Copyright © 2017-2023 Stibo DX A/S Page 92

CUE Front Developer Guide

• Between CUE Front releases

Sometimes, upgrading a recipe extension will involve additional tasks. Before upgrading a
recipe extension, therefore, you should always review the extension's README file (published on
npm.escenic.com) and check for upgrade instructions.

8.4.1 Upgrading with CUE Front

All releases of CUE Front are accompanied by a set of release notes describing all significant changes
in the new version. You can find a link to these release notes on the main documentation page for
each version (here, for the current version). In most releases, some of the changes listed in the release
notes will either be or include changes to one or more recipe extensions. In such cases, the change
description will include the names and versions of the affected extensions. In order to apply these
changes to your installation, therefore, you will need to edit your recipe/package.json file and
increment the version numbers of the affected extensions as specified.

8.4.2 Upgrading Between CUE Front Releases

Recipe extension changes are in many cases published on npm.escenic.com as soon as they are
ready and tested, and if they can be used independently of changes to other CUE Front components.
It is therefore possible to take advantage of some error corrections and improvements without waiting
for a new CUE Front release. Stibo DX does not send automatic notifications about upgrades to
individual recipe extensions, but you can get information about available changes in the following
ways:

From Stibo DX support
You may be told by Stibo DX support that a bug you have reported can be fixed by upgrading an
extension to a specific version, or that a feature you have requested is already implemented and
can be obtained by upgrading an extension.

By querying the NPM server
You can get information about recently published extension versions from npm.escenic.com,
by entering the following command in the CUE Front installation folder (while the Cook is
running):

docker-compose exec cook npm show @escenic/extension-name changes

where extension-name is the name of the extension you are interested in.

This will produce a list of the most recently published versions available in the repository, and
for each version, a list of the changes introduced. For example:

Changelog

Recent changes to @escenic/cue-front-graphql@v0.0.25

Changes between v0.0.14 and v0.0.25

 * DPRES-899: Fixed typo in accessing attributes of HTMLElement.
 * DPRES-806: Added support to remove empty publication feature properties.
 * DPRES-896: Fixed broken rich text fields
 * DPRES-832: Added support for primitive type array fields.
 * DPRES-832: Added support for complex field.
 * DPRES-896: Inline elements now resolve from the correct content item
 * DPRES-510: Only published inline relations are shown.
 * DPRES-831: Use label + description of content type
 * DPRES-831: Added comment for each field too.

Copyright © 2017-2023 Stibo DX A/S Page 93

https://npm.escenic.com/
http://docs.escenic.com/cue-front-1.22.html

CUE Front Developer Guide

 * DPRES-831: Added a comment to the generated schema
 * DPRES-831: Documented most of the schema
 * DPRES-832: fixed bugs in dealing with complex and arrays
 * DPRES-832: whitespace changes to make it easier to spot differences

8.4.2.1 Upgrade Procedure

Before you upgrade a recipe extension, you should visit npm.escenic.com in a browser, log in
using your Stibo DX credentials and view the README file for the extension you intend to upgrade.
This file will contain configuration instructions for the extension, including information about any
configuration changes you may need to make for the new version.

To upgrade an extension:

1. Open recipe/package.json in a text editor.

2. Find the entry for the extension you want to upgrade. For example:

 "@escenic/cue-front-graphql": "0.0.14",

3. Replace the version number.

4. Save the file.

5. Make any required configuration changes.

6. Restart the Cook.

If for any reason the upgraded version of the extension does not work as required, you can go back to
your old version by simply reverting the changes you have made and restarting the Cook again.

8.5 Customizing the Cook Response
Sometimes you may need to customize the final response sent to the Waiter. The recommended way to
do this is to modify your publication's recipe.js file.

Suppose for example, you want to change the Last-Modified header in the Cook's response. By
default the Last-Modified header is set to the last-modified time of the requested content item or
section page. This may, however, be insufficiently accurate for some purposes: the content returned by
a request may also contain additional dynamic data such as data source results, fragments containing
links to most-read articles and so on. Two requests for the same content item could produce responses
with the same Last-Modified header, even though the content in the two responses are different.
This can create problems with regard to caching, third-party services such as RSS generators and so
on.

You can fix such a problem by modifying the exports.run() function in recipe.js to modify the
Last-Modified header of the final response:

 exports.run = function (request, done) {
 this.extensions.run(this, {request}, (results) => {
 request.resolution.headers['Last-Modified'] = new Date(); // Set it based on
 GraphQL response which is part of "results"
 done(results);
 });
 };

Copyright © 2017-2023 Stibo DX A/S Page 94

CUE Front Developer Guide

8.6 Reference Documentation
Reference documentation for all the default recipe extensions supplied by Stibo DX is available
on the NPM server together with the extensions themselves. To view the index of all available
recipe extensions, open http://npm.escenic.com/#/ in a browser, and log in with your your
Stibo DX credentials. To view the documentation of a specific recipe extension, go to http://
npm.escenic.com/#/detail/@escenic/extension-name, where extension-name is the name of
the required recipe extension.

Note that if you are not logged in and attempt to view the documentation of a recipe extension, the
NPM server displays an error message suggesting the recipe extension you requested does not exist,
rather than a login form - you have to explicitly click on the Login button in the page header and
log in to see the page content.

Copyright © 2017-2023 Stibo DX A/S Page 95

CUE Front Developer Guide

9 ESI Support

Edge Side Includes (ESI) is a widely-used standard for caching of web pages. The basic idea is that
parts of a web page that do not get updated frequently can be identified using special ESI markup, and
cached in servers close to clients.

CUE Front can support ESI if correctly configured, and the Tomorrow Online demo publication makes
use of ESI for displaying page headers and footers. This section contains a brief description of the
Tomorrow Online implementation.

Tomorrow Online's default-master.twig template contains the following lines:

{% if data.headerMenuESI %}
 <esi:include src="{{ data.headerMenuESI }}" onerror="continue"/>
{% elseif data.headerMenu %}
 {% include "organisms-header" with {"menu" : data.headerMenu} %}
{% endif %}

Here, the template sends an ESI tag instead of executing a header template if the data received
from the Cook indicates that ESI is in use (that is, if it contains a headerMenuESI field. It replaces
{{ data.headerMenuESI }} with the value of the field (.esi/header-menu).

The response passes through an ESI caching server on the way to the client. The ESI server replaces
the esi:include tag with the actual header menu which it obtains either from its cache or by
sending a request for the .esi/header-menu resource back to the Tomorrow Online server. After
inserting the header menu, the caching server passes the completed page on to the client.

Any response received by the Cook for a URL starting with the characters .esi/ is handled specially,
as described in section 4.2.3. In the case of Tomorrow Online, this means that the response will be
generated by the esi/header-menu.graphql query, which returns a header menu.

The mechanisms used to implement ESI here are very flexible, and can be modified to meet your
needs. In particular, the rule that treats URLs starting with the characters .esi/ in a special way is
defined in a simple recipe configuration, and can easily be modified as described in section 8.1.3.

The Waiter incorporates a simple ESI parser for use during development, so that you do not need to
include an ESI cache in your development environment. The parser is enabled by default. To disable it
in a production system, replace

enableESIParser: true

with

enableESIParser: false

in your waiter-config.yaml file.

The Waiter's ESI parser only supports the esi:include element, and does not support the use of
unbalanced templates. What that means is that the HTML content replaced by an esi:include
element must contain a balanced set of HTML start and end tags - you can't have the start of an
element in one template and the end in another. This kind of templating is actually allowed by the
ESI standard, but it is generally regarded as bad practice and is not handled by the Waiter's parser.

Copyright © 2017-2023 Stibo DX A/S Page 96

https://en.wikipedia.org/wiki/Edge_Side_Includes

CUE Front Developer Guide

10 Cache Configuration

This section contains general information regarding the configuration of caches in CUE Front-based
front end systems.

10.1Configuring the Cook's Built-in Cache
The Cook forwards incoming requests to the Content Store and passes responses back to the requester
(usually the Waiter). The Content Store web service returns data in the form of Atom XML resources,
which need to be parsed and converted to JSON objects before they can be returned to the Waiter.
This parsing is relatively CPU-intensive. A significant proportion of the requests the Cook handles are
repeat requests for the same resources; often resources that change relatively infrequently such as
publications, sections, section pages, popular tags and so on.

In order to minimize repeat requests of this kind, the Cook incorporates a cache in which ready-parsed
responses are stored for re-use where possible. The cache is an LRU (least recently used) cache with
ETag-based validation. This means that:

• All responses are saved until the cache is full. Once the cache is full, space for new responses is
created by throwing out the least-recently used old response.

• The Cook uses a response's ETag to determine whether or not a cached response can still be used.
An ETag is a unique ID (such as a checksum) derived from the content of a response that the server
(i.e the Content Store) includes in the response header. The Cook saves this ETag in the cache along
with each response. If the cache contains a response for an incoming request, the Cook includes
that response's ETag in the request it forwards to the Content Store. The Content Store checks
this ETag against the ETag of the current content, and if they are identical, returns an empty
response indicating that the requested content has not changed. The Cook can then return the
cached response. If they are not identical, a full response is returned and used to replace the old
cached response.

You can control the details of how the cache behaves by adding settings to the Cook's configuration file,
cook-config.yaml. All the settings must be added as children of the shared-cache property. The
mostly commonly used settings are:

enabled
Set to true to enable caching, or false to disable it.

max
The maximum size of the cache. Once this limit it reached, an old response is thrown out every
time a new response is added. The default setting is 5000 responses.

ttl
The default time to live for cache contents, specified in milliseconds. A cached response which
is older than the specified ttl will initially be regarded as out-of-date or stale. What happens
to a stale response is determined by how the allowStale property is set.

This default time to live may be overridden for individual pages by cache settings in the pages'
HTTP headers (see maxAge-header below for details). It may also be overridden by path-
rules (see below).

Copyright © 2017-2023 Stibo DX A/S Page 97

CUE Front Developer Guide

allowStale
Determines whether or not ETag validation is performed. The possible values are:

true (default)
ETag validation is performed for stale responses. The Cook forwards the request to the
Content Store along with the cached ETag, and if the Content Store says the ETag is still
valid, the cached response is returned to the waiter. If the ETag is not valid then the new
response returned from the Content Store is passed back to the Waiter and used to update
the cache.

false
ETag validation is not performed for stale responses. The request is forwarded to the
Content Store without an ETag. The response is returned to the Waiter and used to
update the cache.

The following examples show how the ttl property (or page-specific max age settings) and
stale property work together:

ttl=0, stale=false
Caching is disabled.

ttl=0, stale=true
ETag validation is performed on all cached responses.

ttl=2000, stale=false
Cached responses under 2 seconds old are used without validation, older responses are
not used at all.

ttl=2000, stale=true
Cached responses under 2 seconds old are used without validation, ETag validation is
performed on all older responses.

maxAge-header
By default, the Cook will obey any valid max-age or s-maxage setting supplied in a page's
Cache-Control header. You can use this property to make the Cook either:

• Look in a different header for the max age setting, by specifying the name of the alternative
header. If you specify an alternative header name then the specified header may either have
the same structure as a Cache-Control header, or it may just contain an integer value
specifying the required max age setting in seconds.

• Ignore all cache control headers by specifying false

So if maxAge-header is set to false, the Cook will ignore all page headers and use the
fallback values specified in this configuration file for all content. If maxAge-header is set to
the name of a custom header, then the Cook will use any value found in the specified header
if it is present, and otherwise use the fallback values specified in this configuration file for all
content. If maxAge-header not specified or set to Cache-Control, then the Cook will use the
Cache-Control header if it is present, and otherwise use the fallback values specified in this
configuration file for all content.

path-rules
This property can contain an array of pattern properties containing URL patterns and cache
settings. Any page with a URL that matches a pattern gets the cache settings associated with that
pattern (both ttl and allowStale).

Max age settings are applied with the following priority:

Copyright © 2017-2023 Stibo DX A/S Page 98

CUE Front Developer Guide

1. Settings supplied in page headers, if maxAge-header is not set to false (see the description of
maxAge-header for details).

2. Setting specified in a matching path rule.

3. The default specified with ttl.

allowStale settings are applied with the following priority:

1. Setting specified in a matching path rule.

2. The default specified with allowStale.

Here is an example cache configuration:

shared-cache:
 enabled: true
 ttl: 5000
 maxAge-header: Cache-Control
 path-rules:
 - pattern: /webservice/escenic/content/0-9+
 ttl: 10000
 - pattern: /webservice/escenic/section-page/0-9+
 ttl: 20000
 - pattern: /menu-webservice/
 ttl: 30000
 allowStale: false

This configuration says that:

• Caching is enabled.

• Any content containing a Cache-Control header will cached as specified in that header.

• Any content without a Cache-Control header and a URL path that matches the pattern /
webservice/escenic/content/0-9+ will be assigned ttl: 10000 and allowStale:
true.

• Any content without a Cache-Control header and a URL path that matches the pattern /
webservice/escenic/section-page/0-9+ will be assigned ttl: 20000 and allowStale:
true.

• Any content without a Cache-Control header and a URL path that matches the pattern /menu-
webservice/ will be assigned ttl: 30000 and allowStale: false.

• Any content without a Cache-Control header and a URL path that does no match any of the
specified patterns will be assigned ttl: 50000 and allowStale: true.

The cache does have additional settings that you might find useful in some circumstances. For full
information, see here. Note, however, that the Cook only supports the use of properties with simple
values. Properties such as length and dispose that require functions as values are not supported.

For general information on how to add configuration properties to cook-config.yaml so that they
will not be overridden by CUE Front upgrades, see section 13.6.

10.1.1 Layout-sensitive caching

The Cook's built-in cache provides content-only caching. A rendered web page, however, consists
of more than just the content. It also includes a lot of HTML, CSS and Javascript code, boilerplate
content and so on. This layout-related content is added by the Waiter, and may also need to be cached.

Copyright © 2017-2023 Stibo DX A/S Page 99

https://github.com/isaacs/node-lru-cache

CUE Front Developer Guide

Many CUE Front installations therefore include a caching server such as Varnish placed in front of the
Waiter.

The ETags generated by Content Store are not sufficient for such a configuration to work effectively,
since they only change when the content changes, and take no account of changes to a publication's
Twig templates, CSS and Javascript files. You can, however, make this caching layer sensitive to
layout changes by adding an etagSuffix attribute to your Waiter configuration file, waiter-
config.yaml.

This attribute, as its name suggests, defines a suffix that the Waiter appends to the ETag of every
response it receives from the Cook before passing the response on to its client. The idea is that you
configure your application deployment procedure to modify the etagSuffix every time changes are
deployed. You could, for example, use a build number or a time stamp as an etagSuffix value. This
means that the ETags seen by an external caching server will change not only when a page's content
changes, but also when its layout may have changed, ensuring that out-of-date layouts are never served
to the end user. Exactly what strategy you choose for updating the etagSuffix will depend on your
requirements and your development procedures.

Since etagSuffix must be explicitly set each time your application is deployed (or at least each time
a significant layout change has been made), there may be no risk of it being overridden by CUE Front
upgrades. If, however, your chosen etagSuffix update strategy means this is still a risk, see section
13.6 for general information on how to avoid it.

If you find that your web site is not reflecting layout changes even after introducing an
etagSuffix update strategy, a possible reason may be that the Waiter's Twig cache contains some
old templates, and needs to be cleared. This should not in general be a problem.

10.2Caching Cook Responses
In many cases, it makes good sense to place a cache between the Cook and the Waiter, since GraphQL
query execution is costly. Moreover, in some system configurations, the Cook and Waiter are in
completely different networks. You can then avoid publicly exposing the Cook by placing a caching
server in front of it to act as a kind of API gateway. This section provides information that may be
useful when implementing such a caching server.

The advice offered in this section should be regarded as preliminary. Stibo DX is still in the process
of gathering experience with regard to the caching of Cook responses.

10.2.1 Cook Response Link Headers

A single GraphQL query submitted to the Cook typically results in many Content Store web service
requests. The Cook includes a copy of these requests in the Link header of its responses. For example:

Link : <http://engine:8080/resolver/tomorrow-online/News/International/>; rel=inv-
by,<http://engine:8080/webservice/escenic/section-page/12>; rel=inv-by,
<http://engine:8080/webservice/escenic/section/5>; rel=inv-by,<http://engine:8080/
webservice/escenic/publication/tomorrow-online>; rel=inv-by,
<http://engine:8080/webservice/escenic/content/2>; rel=inv-by,<http://engine:8080/
webservice/escenic/list/269>; rel=inv-by,
<http://engine:8080/webservice/escenic/list/268>; rel=inv-by,<http://engine:8080/
webservice/escenic/list-pool/268>; rel=inv-by,

Copyright © 2017-2023 Stibo DX A/S Page 100

CUE Front Developer Guide

<http://engine:8080/webservice/escenic/list-pool/269>; rel=inv-by,<http://engine:8080/
webservice/escenic/section/3>; rel=inv-by,
<http://engine:8080/webservice/escenic/section/1>; rel=inv-by,<http://engine:8080/
webservice/escenic/section/2>; rel=inv-by,
<http://engine:8080/webservice/escenic/content/1>; rel=inv-by

The reason for including this information in response headers is to make it possible for a caching
server to invalidate cached responses based on changes in the Content Store rather than simple time-
based expiry. The server can monitor changes to the data in the Content Store using a Change Log
Daemon, for example, and invalidate responses whenever one of the component objects listed in the
Link header changes.

The host name used in the web service URLs returned in the headers is determined by the servers/
host property in cook-config.yaml.

Some GraphQL queries may produce extremely long Link headers. Your caching server may not
tolerate such long headers by default, in which case you may need to increase some configuration
settings. In the case of nginx, for example, a configuration something like this will help:

location / {
 proxy_pass http://localhost:8101;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $remote_addr;

 proxy_buffer_size 256k;
 proxy_buffers 4 512k;
 proxy_busy_buffers_size 512k;
 }

If you do not wish to make use of event-driven cache invalidation, you can disable the generation of
these link headers by setting:

include-http-link-header-in-response: false

in cook-config.yaml.

10.2.2 Caching Dynamic Responses

Not all the content returned in a Cook response is suitable for event-driven invalidation. Specifically,
content returned from data sources is dynamic in nature and should be invalidated by time-based
expiry. In order to be able to make use of event driven invalidation where appropriate, therefore, your
GraphQL queries cannot mix ordinary context-based queries with data source queries.

It is not possible, for example, to apply event-driven validation to a GraphQL query like this:

{
 latest_sport: datasource(name:"latest_sport") {
 ... on Storyline {
 id: displayId
 href(homePublication:true)
 title
 }

 ... on Story {
 id: displayId
 href(homePublication:true)

Copyright © 2017-2023 Stibo DX A/S Page 101

CUE Front Developer Guide

 title
 }
 }
 latest_politics: datasource(name:"latest_politics") {
 ... on Storyline {
 id: displayId
 href(homePublication:true)
 title
 }

 ... on Story {
 id: displayId
 href(homePublication:true)
 title
 }
 }
 political_stories: listByNameAndSection (name: "politicsStories", sectionUniqueName:
 "politics") {
 ... on Storyline {
 id: displayId
 href(homePublication:true)
 title
 }

 ... on Story {
 id: displayId
 href(homePublication:true)
 title
 }
 }
 resolution {
 context: type
 remainingPath
 #shared publication_info
 publication {
 name
 href
 features_raw
 features {
 key
 value
 }
 }
 #endshared
 #shared section_info
 section{
 name
 uniqueName
 href
 parameters{
 key
 value
 }
 }
 #endshared
 }
 headerMenuESI: _static(value: "/.esi/header-menu")
 footerMenuESI: _static(value: "/.esi/footer-menu")
 context {

Copyright © 2017-2023 Stibo DX A/S Page 102

CUE Front Developer Guide

 ... on SectionPage {
 name
 displayId
 rootGroup {
 ... on FrontGroup {
 top {
 ...teaser
 }
 main {
 ...teaser
 }
 }
 }
 }
 }
}

The highlighted data source queries latest_sport and latest_politics need to be separated out
so that their results can be invalidated based on time. This is true for all dynamic content, not just data
sources - lists, "most-read article" lists, Solr queries and so on.

Two possible ways of achieving this are:

• Use ESI

• Let your Waiter retrieve data source content separately

10.2.2.1 ESI Method

To do this, you need to separate out your data source or other dynamic content queries queries into the
ESI folder:

queries/esi/latest_sport

latest_sport: datasource(name:"latest_sport") {
 ... on Storyline {
 id: displayId
 href(homePublication:true)
 title
 }

 ... on Story {
 id: displayId
 href(homePublication:true)
 title
 }
}

queries/esi/latest_politics

latest_politics: datasource(name:"latest_politics") {
 ... on Storyline {
 id: displayId
 href(homePublication:true)
 title
 }

 ... on Story {
 id: displayId

Copyright © 2017-2023 Stibo DX A/S Page 103

CUE Front Developer Guide

 href(homePublication:true)
 title
 }
}

and then use the general ESI method as described in chapter 9.

10.2.2.2 Separate Retrieval Method

As with the ESI method, you move the dynamic queries out of your main query into a separate
subfolder (queries/dynamic, for example):

queries/dynamic/latest_sport

latest_sport: datasource(name:"latest_sport") {
 ... on Storyline {
 id: displayId
 href(homePublication:true)
 title
 }

 ... on Story {
 id: displayId
 href(homePublication:true)
 title
 }
}

queries/dynamic/latest_politics

latest_politics: datasource(name:"latest_politics") {
 ... on Storyline {
 id: displayId
 href(homePublication:true)
 title
 }

 ... on Story {
 id: displayId
 href(homePublication:true)
 title
 }
}

Then you configure cue-front-extension-path-mapper to redirect URLs starting with
.dynamic to this folder, by adding the following to cook-config.yaml:

- name: '@escenic/cue-front-extension-path-mapper'
 config:
 directory: dynamic
 criteria:
 match: '\.dynamic\/([a-zA-Z0-9-]+)'
 base-name: $1
 lookup:
 - BASE

Copyright © 2017-2023 Stibo DX A/S Page 104

CUE Front Developer Guide

The dynamic queries can then be executed directly from your Waiter/front-end application by sending
requests to the appropriate endpoints (https://cook:8101/publication-name/.dynamic/
latest_sport, for example).

To execute such a query in the context of a specific article, section or tag, you just append the query
path (i.e .dynamic/latest_sport) after the Cook URL of the article, section or tag.

You can now modify your Waiter to execute both a main query and any required dynamic content
queries, and to merge the results into the required page structure.

10.2.3 Accessing External Back Ends

Some CUE Front-based publications combine Content Store content with content from external back
ends (for example, weather reports, sports results, stock market data and so on). It is recommended
that you do not do use Cook recipe extensions to include the external content. External back ends
have unknown caching requirements, that cannot easily be combined with Content Store caching
requirements. Such external data should be directly retrieved and combined with the Content Store by
your Waiter/front-end application. This will ensure that you can reliably cache Cook responses using
the methods described here.

10.3Capabilities
Capabilities is currently an experimental feature. It is not yet recommended for production use.

Capabilities is an optional CUE Front feature that enforces the creation of "cache-friendly" queries.

When capabilities are not enabled, a typical CUE Front query returns everything the Waiter needs
to construct a page. This frequently means a combination of information from objects that are only
very loosely related in the Content Store, and may therefore be updated independently of one another.
A content page request, for example, may include information that does not belong directly to the
content item displayed on its page, but to the section or publication to which the content item belongs.
It may also contain information returned by data sources (effectively search results).

Responses containing mixed content of this sort are very difficult to cache effectively, as described in
section 10.2. Enabling capabilities prevents you from creating a query like this. Instead, you will be
required to split the query into two or possibly more queries with different capabilites: one to retrieve
the actual content item and one to retrieve data source content, for example. These smaller, simpler
queries will produce results that can be more easily and efficiently cached.

10.3.1 Enabling Capabilities

The capabilities feature is enabled by setting:

enable-capability: true

in your cook-config.yaml file.

If you do this, then you must organize all your queries accordingly – you cannot use capabilities
for some queries and not for others. If enable-capability is set to true, then all queries are
automatically assigned a capability (the context capability by default).

Copyright © 2017-2023 Stibo DX A/S Page 105

CUE Front Developer Guide

10.3.2 Using Capabilities

CUE Front provides a fixed set of predefined capabilities called context, datasource, menu, list,
tag, search, content and custom, that are associated with the following Cook endpoint URLs.

context
Is associated with the / endpoint (for example http://cook:8101/mypub/).

datasource
Is associated with the .datasource/ endpoint (for example http://cook:8101/
mypub/.datasource).

menu
Is associated with the .menu/ endpoint (for example http://cook:8101/mypub/.menu).

list
Is associated with the .list/ endpoint (for example http://cook:8101/mypub/.list).

tag
Is associated with the .tag/ endpoint (for example http://cook:8101/mypub/.tag).

search
Is associated with the .search/ endpoint (for example http://cook:8101/
mypub/.search).

content
Is associated with the .get/ endpoint (for example http://cook:8101/mypub/.get).

custom
Is associated with the .custom/ endpoint (for example http://cook:8101/
mypub/.custom).

What this means is that if you create a query in the GraphiQL editor by entering a URL such as:

http://cook:8101/mypub/edit

Then that query will be assigned the context capability, and you will find that many of the GraphQL
fields you would normally expect to be able to use (datasource, for example), are no longer available
to you. When you save the query it will be stored as usual in your publication's recipe/queries
folder, under the name index-page.graphql.

If, on the other hand, you create a query in the GraphiQL editor by entering a URL such as:

http://cook:8101/mypub/.datasource/edit

Then the query will be assigned the datasource capability. You will find that in this query the usual
context and resolution fields are unavailable. In fact, the only fields available in a datasource
query are datasource and extendedDatasource, so that you can only use the query to retrieve
information from data sources.

Similarly, you can POST a query with the menu capability using the http://cook:8101/
mypub/.menu/edit endpoint, or POST a list query using the http://cook:8101/
mypub/.list/edit endpoint.

These conventions apply to all your queries, not just the default index-page query. So http://
cook:8101/mypub/storyline/edit displays the recipe/queries/storyline.graphql
query (with context capability) for editing, and this stored query is used whenever a GET request
is submitted to the http://cook:8101/mypub/storyline endpoint. http://cook:8101/

Copyright © 2017-2023 Stibo DX A/S Page 106

CUE Front Developer Guide

mypub/.list/storyline/edit, on the other hand will always display an empty query (with list
capability). If you run a query at this endpoint using GraphiQL then it will be POSTed to the /.list/
storyline endpoint.

The purpose of each of the defined capabilities is described below, along with a list of the fields each
capability makes available:

context
The context capability is the default capability, used for displaying the bulk of a content or
section page. A GraphQL query with context capability has access to the following top-level
fields:

context
resolution

datasource
The datasource capability is used for data source queries. A GraphQL query with
datasource capability has access to the following top-level fields:

datasource
extendedDatasource

menu
The menu capability is used for menu queries. A GraphQL query with menu capability has access
to the following top-level fields:

menu
extendedMenu

list
The list capability is used for list queries. A GraphQL query with list capability has access to
the following top-level fields:

listById
listByNameAndSection

tag
The tag capability is used for tag queries. A GraphQL query with tag capability has access to
the following top-level field:

getTag

search
The search capability is used for search queries. A GraphQL query with search capability has
access to the following top-level field:

getArticlesByID

Note that the getArticlesByID field is only available when the capabilities feature is enabled,
and replaces getArticles. When capabilities is disabled, getArticles is still used.

content
The content capability is typically used for search page queries. A GraphQL query with
content capability has access to the following top-level field:

getSection

Copyright © 2017-2023 Stibo DX A/S Page 107

CUE Front Developer Guide

custom
The custom capability is used for custom queries. A GraphQL query with custom capability
has access to any top-level fields that are not made available by any of the other capabilities.
Typically this is fields made available by custom recipe extensions.

When capabilities are not enabled, the content of a typical page consisting of a storyline, a header
containing a menu and a list of related content from a data source could all be retrieved using a
single GraphQL query (http://cook:8101/mypub/storyline, for example). With capabilities
enabled, this is no longer possible: the query must be broken down into at least three separate queries:
http://cook:8101/mypub/storyline for the storyline, http://cook:8101/mypub/.menu/
storyline for the menu and http://cook:8101/mypub/.datasource/storyline for the data
source content. The Waiter application therefore needs to issue three Cook requests instead of one in
order to retrieve the page content. The three responses returned by the Cook can, however, be cached
more efficiently than the alternative composite response.

10.3.2.1 Capability Usage Examples

Below are some example queries showing how various capabilities can be used:

The datasource capability

The following example shows a datasource capability query, using the GraphQL datasource field
(highlighted) to run the data source called latest_sport.

{
 datasource(name: "latest_sport") {
 ... on Storyline {
 displayId
 fields {
 title
 }
 }
 }
}

Here is another example, showing a different use of the datasource. Instead of executing a named
data source, this example directly executes a Solr search using the standard Solr q and fq parameters:

{
 datasource(q: "(publication:\"tomorrow-online\" AND home_section_name:\"Sports\" AND
 (contenttype:\"storyline\" OR contenttype:\"story\"))",
 sort: OLDEST_UPDATED,
 fq:
 ["state:published",
 "-states_facet:pre-active",
 "-states_facet:post-active"]) {
 ... on Storyline {
 displayId
 fields {
 title
 }
 }
 }
}

For general information about data sources, see chapter 7.

Copyright © 2017-2023 Stibo DX A/S Page 108

CUE Front Developer Guide

The menu capability

The following example shows a menu capability query, using the GraphQL menu field (highlighted)
to retrieve the menu called header. Note that this query is designed to use ESI. If you use
capabilities, then your menu queries can be designed to use ESI, replacing the .esi queries
described in chapter 9.

{
 wireframe: _static(value: "esi")
 headerMenu: menu(name:"header") {
 ... menuItems
 }
}

fragment menuItems on MenuItem {
 item {
 ... on SectionMenuItem {
 href
 label
 text
 subcats: subsections {
 href
 label
 }
 }
 ... on ArticleMenuItem {
 href
 label
 text
 }
 ... on LinkMenuItem {
 href
 text
 }
 }
}

10.3.3 Configuration Details

In a default CUE Front installation based on the Cook configuration supplied with the start pack, you
can enable the capabilities by making the following configuration changes:

• Set enable-capability to true as described in section 10.3.1.

• Add a priority setting of 4 or greater to the cue-front-extension-tags and cue-front-
extension-search configurations.

Below is a description of how the capabilities are configured in the default cook-config.yaml
supplied with the start-pack.

The capabilities provided by CUE Front and the GraphQL fields exposed by each capability are
predefined and cannot be modified. The associations between Cook endpoints and capabilities are
provided by the cue-front-extension-path-mapper recipe extension. This recipe extension's
configuration includes a capability property that can be used to associate endpoint URLs such as /
mypub/.datasource/ with capabilities such as datasource. For example:

recipedata:

Copyright © 2017-2023 Stibo DX A/S Page 109

CUE Front Developer Guide

 extensions:
 - name: 'datasource-post'
 path: '@escenic/cue-front-extension-path-mapper'
 priority: 2
 config:
 capability: 'datasource'
 directory: .
 criteria:
 match: '\.datasource'
 base-name: empty
 lookup:
 - BASE

For some capabilities (specifically, the tag and search capabilities), the configuration also includes
an additionalVariables setting like this:

- name: 'tag-post'
 path: '@escenic/cue-front-extension-path-mapper'
 priority: 2
 config:
 capability: tag
 directory: .
 criteria:
 match: '\.tag'
 additionalVariables:
 - name: customContext
 value: tag
 base-name: empty
 lookup:
 - BASE

This setting instructs cue-front-extension-path-mapper to add a variable called
customContext with the value tag to the context object, wrapped inside an object called
additionalVariables. The cue-front-extension-path-mapper configuration for the
search capability includes a similar customContext setting:

- name: 'search-post'
 path: '@escenic/cue-front-extension-path-mapper'
 priority: 2
 config:
 capability: search
 directory: .
 criteria:
 match: '\.search'
 additionalVariables:
 - name: customContext
 value: search
 base-name: empty
 lookup:
 - BASE

The cue-front-extension-path-mapper configurations for the capability endpoints described
here are included in the default Cook configuration supplied in the CUE Front start pack. It is
possible to change the endpoint URLs or their capability associations, but it is not recommended.
For more information about configuring cue-front-extension-path-mapper, see http://
npm.escenic.com/#/detail/@escenic/cue-front-extension-path-mapper.

Copyright © 2017-2023 Stibo DX A/S Page 110

http://npm.escenic.com/#/detail/@escenic/cue-front-extension-path-mapper
http://npm.escenic.com/#/detail/@escenic/cue-front-extension-path-mapper

CUE Front Developer Guide

The additionalVariables set in the cue-front-extension-path-mapper configuration
are added so that they can be used by the cue-front-extension-tags and cue-front-
extension-search extensions. Therefore you need to ensure that these extension are always
run after cue-front-extension-path-mapper. To do this, you need to ensure that they are
configured with a priority of 4 or more (or no priority setting at all). Note that this is actually
true for all recipe extensions – cue-front-extension-path-mapper needs to run first and is
configured in the default Cook configuration with priorities 2 and 3. So all other extensions should
either have no priority or a priority of 4 or more.

Note that the additionalVariables configuration property is a generic feature that can be used
to add any custom variables you wish to the context object. It is also possible to add dynamic values
extracted from the remaining path by regular expression pattern matching. For example:

- name: 'tag-post'
 path: '@escenic/cue-front-extension-path-mapper'
 priority: 2
 config:
 capability: tag
 directory: .
 criteria:
 match: '\.tag/([a-zA-Z0-9-]+)/([a-zA-Z0-9-]+)/([0-9]+)'
 additionalVariables:
 - name: uriPrefix
 value: $1
 - name: tagName
 value: $2
 exposeToGraphql: true
 - name: count
 value: $3
 type: number
 - name: customContext
 value: tag
 base-name: empty
 lookup:
 - BASE

Custom variables are string values by default, but as shown above you can override this by specifying
a type, and you can also specify that the value is to be exposed in a query's graphql output by
specifying exposeToGraphql: true. You can find more information about these features at http://
npm.escenic.com/#/detail/@escenic/cue-front-extension-path-mapper.

Copyright © 2017-2023 Stibo DX A/S Page 111

http://npm.escenic.com/#/detail/@escenic/cue-front-extension-path-mapper
http://npm.escenic.com/#/detail/@escenic/cue-front-extension-path-mapper

CUE Front Developer Guide

11 Diagnostics and Monitoring

This chapter contains descriptions of diagnostic and monitoring tools supplied with CUE Front.

11.1Cook Diagnostic Resources
The Cook provides some useful diagnostic information under the /- URL. If you open a browser and
go to your-site:8101/- you will see a list of links to the following resources:

Incoming requests
This resource is located at your-site:8101/-/incoming. It displays a constantly updated list of
the requests currently being handled by the Cook. For each request the following information is
displayed:

• The number of seconds the request has been running

• The path of the request (/tomorrow-online/tag/ramsey, for example)

• The request's X-Request-ID

For example:

1.243 /tomorrow-online/tag/ramsey e59431a6-a44c-11e8-8957-67f31fc15fef

The list is updated every 3 seconds by default. You can change the refresh interval by editing the
page's URL. To change the interval to 5 seconds, for example enter:

your-site:8101/-/incoming?refresh=5

Outgoing requests
This resource is located at your-site:8101/-/outgoing. It displays a constantly updated list of
outgoing requests made by the Cook that have not yet completed. For each request the following
information is displayed:

• The number of seconds the request has been running

• The request URL (http://solr.example.com:8983/solr/presentation/select?
id, for example)

• The request's X-Request-ID

For example:

1.243 http://solr.example.com:8983/solr/presentation/select?id e59431a6-
a44c-11e8-8957-67f31fc15fef

The list is updated every 3 seconds by default. You can change the refresh interval by editing the
page's URL. To change the interval to 5 seconds, for example enter:

your-site:8101/-/outgoing?refresh=5

Incoming request log
This resource is located at your-site:8101/-/incoming-log. It displays a list of recently
completed incoming requests. For each request the following information is displayed:

• The time at which the request was made

Copyright © 2017-2023 Stibo DX A/S Page 112

CUE Front Developer Guide

• The number of seconds the request took to complete

• The path of the request (/tomorrow-online/tag/ramsey, for example)

• The type of response given (HTTP response code)

• The request's X-Request-ID

For example:

2018-10-30T13:28:06.073Z 1.195 /tomorrow-online/ 200 f292fae7-
adf0-4387-981c-2943dd708f9b

By default, the log shows the last 50 incoming requests. You can modify this by specifying a
parameter in cook-config.yml. To increase the number to 100, for example:

log-incoming-count: 100

Outgoing request log
This resource is located at your-site:8101/-/outgoing-log. It displays a list of recently
completed outgoing requests. For each request the following information is displayed:

• The time at which the request was made

• The number of seconds the request took to complete

• The request URL (http://solr.example.com:8983/solr/presentation/select?
id, for example)

• The type of response received (HTTP response code)

• The request's X-Request-ID

For example:

2018-10-30T15:56:38.448Z 0.197 http://to.example.com:8080/webservice/escenic/
section/8 200 1b829a02-3e75-43d4-b9d2-1f2c4e542566

By default, the log shows the last 100 outgoing requests. You can modify this by specifying a
parameter in cook-config.yml. To increase the number to 200, for example:

log-outgoing-count: 200

The X-Request-ID associated with an incoming request is passed on by the Cook to all associated
outgoing requests, making it easy to see which requests in the log belong together.

11.2Monitoring Log Messages
The easiest way to monitor log messages output by the CUE Front services is to use a web-based log
management tool. There are a number of commercial log management services available, such Loggly.
Dozzle, however, is a freely available open source solution that works well together with CUE Front. It
is itself available as a Docker container, making it very easy to install.

To install dozzle, enter:

docker pull amir20/dozzle:latest

Then to start it, enter:

Copyright © 2017-2023 Stibo DX A/S Page 113

https://www.loggly.com

CUE Front Developer Guide

docker run --name dozzle -d --volume=/var/run/docker.sock:/var/run/docker.sock -p
 8888:8080 amir20/dozzle:latest

You will then be able to view the logs of all Docker containers running on your machine at
localhost:8888. If you want to use a different port, just modify the command accordingly.

It is, of course possible to view the same log messages by simply entering:

docker-compose logs -f

in a terminal window, but Dozzle output is much more useful because it provides a separate log for
each container:

To switch between logs, simply select from the menu on the left.

Copyright © 2017-2023 Stibo DX A/S Page 114

CUE Front Developer Guide

12 More About Cleaver

The Cleaver provides basic image management functionality out of the box, and for many uses does
not require any special configuration. It does, however offer additional features that can be enabled if
required:

• Cloud-based image caching

• Image Filters

• Multithreading

The following sections describe how to enable these optional features, plus how to customize the
Cleaver's log output.

12.1Cloud-based Image Caching
By default the Cleaver retains copies of all cropped images in a local cache. When an image is
requested, it looks for the image in this cache first. If the requested image is not present in the cache,
then it downloads the original image from the Content Store, applies the requested crop, returns
the requested image and saves it in the cache for next time. This mechanism works well for a single-
Cleaver installation with unlimited disk space, but can run into the following problems:

• The cache may need to be pruned periodically due to disk space limitations by running a cron job
to remove infrequently requested images. This means, however, that the deleted images will need
to be re-cropped the next time they are requested. Scrapers and indexers making many requests for
old images can then result in load spikes.

• Adding extra Cleaver instances to improve performance can actually have the opposite effect
initially, since each new instance will start up with an empty cache that needs filling. It is in general
inefficient for each Cleaver to maintain its own cache, since each Cleaver will crop its own version of
every requested image, even if another Cleaver has already done the same job.

You can solve both these performance problems by configuring the Cleaver(s) to make use of a cloud-
based secondary cache. If you do this, then when a cropped image is saved to the local cache, it is also
saved to the cloud cache, which is shared between all Cleaver instances. When a request is received by
a Cleaver, it will first check its local cache, and then if necessary, the cloud cache. Only if the image is
not found there will the Cleaver request the original image from the Content Store and crop it. Ideally,
the cloud cache should never be pruned, so that almost all image crops are cached, even those that are
used very infrequently.

Currently the Cleaver only supports the use of Amazon S3 buckets as image caches.

12.1.1 S3 Cache Configuration

To make use of this feature you need to set up an Amazon S3 account. Once you have done that you
can enable the cloud caching feature by running the setup tool in advanced mode. The Cleaver-
related prompts displayed by setup will then include an option to enable S3 storage, plus a number of
configuration parameters:

Copyright © 2017-2023 Stibo DX A/S Page 115

CUE Front Developer Guide

Enable AWS S3 storage support?
Select true.

AWS S3 bucket to use?
Enter the name of S3 bucket to be used for image storage

Subdirectory(or subdirectories) under the bucket root to use for storing images?
Enter the path of the folder to be used for image storage. You might choose a path based on your
publication name – tomorrow-online or publication/tomorrow-online, for example. If
you do not specify a path, then the images are stored directly in the bucket's root folder.

Configure credentials using setup tool?
Select true to enter your S3 credentials here in setup. You might want to do this directly in
the S3 configuration interface, since doing so is more secure and the S3 interface offers more
configuration options. If you want to use S3 to configure Cleaver access, see here for details of
how to do it.

S3 access key?
Enter your S3 access key. This prompt is only displayed if you have selected setup-based S3
configuration.

S3 secret key?
Enter your S3 secret key. This prompt is only displayed if you have selected setup-based S3
configuration.

S3 region name?
Enter the name of S3 region you are using. This prompt is only displayed if you have selected
setup-based S3 configuration.

Answering all the above prompts will result in a Cleaver configuration that looks something like this:

servers:
 -
 host: 'engine:8080'
 username: tomorrow-online_admin
 password: admin
log-file: 'stdout:'
download-dir: /var/cache/cleaver/
listen: '0.0.0.0:8102'
retry_download_count: 0
debug: true
s3:
 enabled: true
 bucket_name: "your-bucket-name"
 key_prefix: "your-image-cache-path" # example: 'tomorrow-online', 'publication/
tomorrow-online'
 aws_access_key_id: your-access-key
 aws_secret_access_key: 'your-secret-key'
 region_name: 'your-region-name'

You can manually add further settings under the s3: entry if required. These settings all correspond to
S3 configuration parameters that can also be set via the S3 configuration interface:

use_ssl: False

 # Supported upload arguments.
 # For details: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/
customizations/s3.html#boto3.s3.transfer.S3Transfer.ALLOWED_UPLOAD_ARGS
 upload_args:

Copyright © 2017-2023 Stibo DX A/S Page 116

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html

CUE Front Developer Guide

 ServerSideEncryption: "AES256"

 # Supported download arguments.
 # For details: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/
customizations/s3.html#boto3.s3.transfer.S3Transfer.ALLOWED_DOWNLOAD_ARGS
 download_args:

 # How many uploads to perform concurrently
 upload_concurrency: 10 # default: 5

 # Supported transfer config for downloading.
 # For details: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/
customizations/s3.html#boto3.s3.transfer.TransferConfig
 download_conf:

 # S3 library specif debug logs
 debug: true

 # S3 Library specific debug log format.
 # For details: https://docs.python.org/3/library/logging.html#logrecord-attributes
 debug_log_format: "%(name)s - %(thread)d - %(threadName)s - %(levelname)s -
 %(message)s"

use_ssl: Whether or not to use HTTPS for communication with S3 (default is false)
upload_args: See here for details.
download_args: See here for details.
upload_concurrency: Maximum number of concurrent uploads to allow (default is 5)
download_conf: See here for details.
debug:
debug_log_format: See here for details.

12.1.1.1 Using Alternative S3 Providers

If you want to use an S3-compatible cloud storage provider other than Amazon, you can do so by
manually adding an endpoint_url property under the s3: entry in your Cleaver configuration file:

s3:
 enabled: true
 bucket_name: "your-bucket-name"
 key_prefix: "your-image-cache-path" # example: 'tomorrow-online', 'publication/
tomorrow-online'
 aws_access_key_id: your-access-key
 aws_secret_access_key: 'your-secret-key'
 region_name: 'your-region-name'
 endpoint_url: 'alternative_service_url'

The property must contain the endpoint URL of the service you want to use. The authentication
properties aws_access_key_id and aws_secret_access_key must in this case contain
credentials for the alternative service you want to use, and not Amazon credentials.

The setup utility will not prompt for the endpoint_url property, it must be added manually.

12.2Image Filters
The Cleaver can apply filters to the images it handles. By default, the Cleaver does the following:

Copyright © 2017-2023 Stibo DX A/S Page 117

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/customizations/s3.html#boto3.s3.transfer.S3Transfer.ALLOWED_UPLOAD_ARGS
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/customizations/s3.html#boto3.s3.transfer.S3Transfer.ALLOWED_DOWNLOAD_ARGS
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/customizations/s3.html#boto3.s3.transfer.TransferConfig
https://docs.python.org/3/library/logging.html#logrecord-attributes

CUE Front Developer Guide

1. Retrieves a requested image from the Content Store

2. Crops and scales the retrieved image as specified in the URL parameters supplied with the
request.

3. Saves the prepared image in its cache

4. Returns the the prepared image to the client that requested it.

It can, however, optionally apply filters to the prepared image before it is cached (between steps 2 and
3).

The Cleaver does not, however, have any built-in image filtering functionality: all it does is provide a
convenient mechanism for running external image processors such as ImageMagick and ExifTool. The
image processor must already be installed in the Cleaver's local environment. If, for example you want
to use the Cleaver to apply ImageMagick filters to cropped images, then you must first of all make sure
that ImageMagick is installed in the same environment as the Cleaver (that is, in the same container).

12.2.1 Filter Configuration

In order for the Cleaver to be able to perform any filtering, you must configure it correctly, by adding
configurations to your cleaver-config.yaml file.

All filtering configurations are grouped under a filters entry:

filters:
 - name: clean-metadata
 execute: auto
 description: "Removes metadata exif information"
 command: "convert -strip {input} -strip {output}"
 - name: persist-iptc
 execute: auto
 description: "retains iptc metadata information"
 command: "cp {input} {output} && exiftool -overwrite_original -tagsFromFile
 {original} -IPTC:all -XMP:XMP-photoshop:all {output} > /dev/null 2>&1"
 - name: watermark
 execute: auto
 description: "Adds a Escenic watermark to the picture"
 command: "composite -dissolve 20% -gravity center /path/to/watermark.png {input}
 {output}"
 extensions: [jpg, JPG, jpeg, JPEG]
 ...etc.

and may contain the following settings:

name
Required. The name you want to give to the filter. The name setting must be preceded by a -
(hyphen) to indicate the start of a new filter item.

execute
Optional. If you specify execute: auto, then this filter will be automatically applied to all
images handled by the Cleaver (unless excluded by the extensions setting – see below). If you
omit this setting, then the filter will only be applied if explicitly requested. You can ensure that
filters are requested if execute: auto is not set by configuring the cue-front-extension-
image recipe extension to associate image filters with image representations. For instructions
on how to do this, see section 8.1.1.1.

Copyright © 2017-2023 Stibo DX A/S Page 118

CUE Front Developer Guide

description
Optional. A brief description of what the filter does.

command
Required. The operating system command required to execute the filter operation. In the
second example shown above, the command:

cp {input} {output} && exiftool -overwrite_original -tagsFromFile {original} -
IPTC:all -XMP:XMP-photoshop:all {output} > /dev/null 2>&1

uses the exiftool utility to copy IPTC and Photoshop metadata from the original Content
Store image to the cropped/scaled output image. Use the following placeholders as required in
your filter commands:

{input}
The cropped/scaled image output from the Cleaver.

{output}
The modified image output from your filter.

{original}
The original Content Store image.

extensions
Optional. A comma-separated list of filename extensions, enclosed in square brackets ([and
]). If specified, then the filter will only be applied to images with one of the specified extensions.
If extensions is not specified, then the filter is applied to all images.

If you configure more than one filter, then they will be executed in the order they are specified in the
configuration file. In some cases, the order in which filters are executed may be significant, so you
should think about this when editing your filter configurations.

The default cleaver-config.yaml configuration file contains a number of predefined filter
configurations, most of which make use of ImageMagick utilities, so in order to use them, you need to
make sure ImageMagick is installed together with the Cleaver. Two of the predefined configurations,
however (base64 and guetzli) make use of the Gueztli compression tool, so in order to use them
you need to make sure that this tool is installed together with the Cleaver. For information about this
tool, see https://github.com/google/guetzli.

You can, of course create filters that make use of other image processing tools, such as the second
example above, which makes use of ExifTools. Any tool with a command line interface that has been
installed in the Cleaver container can be used to implement a Cleaver filter.

12.3Multi-threading
The Cleaver uses multi-threading to process images in parallel where possible, taking advantage
of multi-core processors. The Cleaver's multi-threading capabilities are provided by an open
source Python WSGI HTTP Server called Gunicorn. Gunicorn is configured by means of a Python
configuration file called gunicorn_config.py, supplied in the CUE Front start pack's Cleaver
service folder (path/cue-front/service/cleaver).

The default configuration contains sensible settings that will work reasonably well in most
circumstances, but you may be able to improve performance by tuning the settings. You can in theory
change the configuration by editing path/cue-front/service/cleaver/gunicorn_config.py

Copyright © 2017-2023 Stibo DX A/S Page 119

https://github.com/google/guetzli
https://www.exiftool.org/
https://gunicorn.org/

CUE Front Developer Guide

directly, and then using setup to regenerate the CUE Front configuration. gunicorn_config.py,
however, is designed to read all the most important configuration parameters from environment
variables. A simpler way to configure multi-threading therefore, is to define environment variables for
the specific parameters you want to override. The configuration process is then:

1. Add the required environment variable definitions to the path/cue-front/setup/.env file.

2. Use the setup tool to regenerate the CUE Front configuration as described in section 13.3.

The environment variables you may want to define are:

WORKERS_PER_CORE
Defines the number of workers to be created, relative to the number of available CPU cores. The
default value of 1 means that one worker is created for each core. A larger number means that
more than one worker is created for each core, and a smaller number means that less than one
worker is created for each core. If, for example, 4 CPU cores are available, then:

1 gives 4 workers
0.5 gives 2 workers
2 gives 8 workers

In the special case where only 1 core is available, specifying a value of 1 will actually cause 2
workers to be created (for performance reasons).

MAX_WORKERS
The maximum number of workers allowed. This sets an absolute ceiling on the number of
workers to be created, independent of the number of CPU cores available. If for example, the
CPU has 24 cores and WORKERS_PER_CORE is set to 1, you can nevertheless limit the maximum
number of workers to 20, for example, by setting this environment variable.

WEB_CONCURRENCY
Specifies the number of workers to be created as an absolute number. If specified, this value
overrides the setting calculated from WORKERS_PER_CORE * (number-of- cores). The
number of workers will, however, never exceed MAX_WORKERS.

LOG_LEVEL
The Cleaver log level, info by default. If debug is set to true in cleaver-config.yaml then
this default is overridden and set to debug. If you want logging set to any other level, then set it
here.

TIMEOUT
An interval defined in seconds. A worker that remains silent for specified number of seconds is
killed and restarted. The default value is 120. A high value like this is appropriate because the
Cleaver operates asynchronously.

KEEP_ALIVE
The number of seconds to wait for requests on a Keep-Alive connection. The default is 5. In
general, a value of 1-5 seconds is suitable. If, however, the Cleaver is deployed behind a load
balancer a higher value may be appropriate.

GRACEFUL_TIMEOUT
An interval defined in seconds. A worker whose TIMEOUT has expired is granted this number of
seconds to finish serving requests before it is actually terminated.

ACCESS_LOG
The path to which the access log is to be written. By default no access log is saved.

ERROR_LOG
The path to which the error log is to be written. By default no access log is saved.

Copyright © 2017-2023 Stibo DX A/S Page 120

CUE Front Developer Guide

GUNICORN_CMD_ARGS
Additional Gunicorn command line settings can be set using this variable. You can, for example,
directly set the number of workers and threads to be used as follows:

GUNICORN_CMD_ARGS="--thread=2 --workers=3"

If you need more control over the multi-threading functionality than these environment variables
provide, see the Gunicorn settings documentation for a detailed description of all possible settings.

12.4Exposing a Public Cleaver Endpoint
In a standard CUE Front installation, the Cleaver is hidden from the browser: all of the browser's
image requests go through the Waiter and the Cook. In production systems this can often be a cause of
poor performance. The image processing carried out by the Cleaver is relatively time consuming, and
both the Cook and Waiter can spend significant amounts of time waiting for the Cleaver to respond
to image requests. The Cook and Waiter cannot handle other requests while they are waiting, causing
unnecessary delays.

In order to avoid such bottlenecks, you can reconfigure your installation so that:

• The Cleaver exposes a public endpoint, allowing it to respond directly to browser requests.

• The HTML documents returned by the Waiter to the browser contain image URLs that point to
the Cleaver's public endpoint (or to an image CDN that forwards requests to the Cleaver's public
endpoint).

In this way, any delays caused by the Cleaver responding to image requests will only affect image
requests. They will not prevent the Waiter and Cook handling other document requests.

The following diagrams show the data flow in the default configuration and in the public Cleaver
configuration:

In a production system, where a CDN or load balancer is placed in front of the CUE Front components,
the data flow looks more like this:

In order to set up a CUE Front installation in this way you need to manually reconfigure:

• The Content Store

• The Cook (specifically, the cue-front-extension-image recipe extension)

• The Cleaver itself

12.4.1 Content Store Configuration Changes

In order for images to be requested directly from the Cleaver instead of from the same host as textual
content, the Cook needs to be able to modify the image URLs in the JSON documents it returns. It
does this by prefixing the image URLs with an alternative media URL (https://cleaver:8102/
public in a development installation) which it retrieves from the Content Store web service's
publication resource. In order for a publication resource to include such a media URL, it must be

Copyright © 2017-2023 Stibo DX A/S Page 121

https://docs.gunicorn.org/en/latest/settings.html

CUE Front Developer Guide

configured in one of the Content Store's configuration layers, by adding a mediaUrl property to a
publication property file.

In a development installation with only one publication, you can configure this URL by adding the
property to the neo/publication/GenericPublication.properties file:

$class=neo.xredsys.config/GenericPublication
url=https://tomorrow-online.com/
mediaUrl=https://cleaver:8102/public

In a production installation with multiple publications you may have separate properties files for
each publication, with names of the form neo/publication/Pub-publication.properties file
(neo/publication/tomorrow-online.properties, for example). You will then need to add
a mediaUrl property to each of these files, and the value specified in each file must be different
(typically the URL of a CDN), for example:

$class=neo.xredsys.config/GenericPublication
url=https://pub1.com/
mediaUrl=https://pub1.images.cdn

and

$class=neo.xredsys.config/GenericPublication
url=https://pub2.com/
mediaUrl=https://pub2.images.cdn

Use of the {publication-name} variable makes it possible to define multiple publication and media
endpoint URLs in a single neo/publication/GenericPublication.properties file, as long as
the URLs are based on the publication name and constructed in a regular way:

$class=neo.xredsys.config/GenericPublication
url=https://{publication-name}/
mediaUrl=https://{publication-name}.images.cdn

12.4.2 Cook Configuration Changes

You need to add a new useMediaUrl property to the configuration of the cue-front-extension-
image recipe extension in your cleaver-config.yaml file, and set it to true:

...
recipedata:
 ...
 extensions:
 ...
 - name: '@escenic/cue-front-extension-image'
 config:
 endpoint: 'http://cleaver:8102/image-version'
 useMediaURL: true
 ...

This setting instructs the Cook to get a media URL from a content item's related publication resource
(that is, the media URL you configured in a publication properties file), and use it as a prefix for all
image URLs in the JSON documents it returns. By default, this property is set to false.

For instructions on how to manually modify the service configuration files generated by the setup
tool, see section 13.6.

Copyright © 2017-2023 Stibo DX A/S Page 122

CUE Front Developer Guide

12.4.3 Cleaver Configuration Changes

You will then need to make several changes to your cleaver-config.yaml file. Add the following
new properties to cleaver-config.yaml:

cook-base-url
This property must be set to the same value as the cookBaseUrl property in your waiter-
config.yaml file. The Cleaver needs this URL so that it can send requests to the Cook, in order
to retrieve the information it needs to crop and filter images.

enable-public-service
This property must be set to true. It causes the Cleaver to expose a public endpoint at /
public. When set to false, the /public endpoint is disabled and returns an HTTP 403
response. This property's default value is true, so strictly speaking you do not need to set it.
You are recommended to do so, however, for documentation purposes.

enable-internal-service
This property must be set to false. It causes all other endpoints to be disabled and return an
HTTP 403 response. The default CUE Front/Cleaver configuration will then no longer work.
You might possibly want to leave it set to true for development purposes or during a transition
period, but in a public Cleaver-based production system, it should be set to false.

image-max-age
This property determines the max-age parameter set in the Cache-Control header of images
returned by the Cleaver (specified in seconds). If you do not specify this property then a default
value of 43200 (12 hours) is used.

publications
This property must contain an array of elements providing mappings between the host names
used in incoming image requests and publication names. In a development installation with only
one publication, the following would be sufficient:

publications:
 - name: tomorrow-online
 hostnames:
 - cleaver:8102

In a production system with multiple publications, you need an entry for each publication:

publications:
 - name: pub1
 hostnames:
 - pub1.images.cdn
 - name: pub2
 hostnames:
 - pub2.images.cdn

The purpose of these mappings is to enable the Cleaver to determine which publication a request
belongs to, in order to be able to retrieve cropping and filtering instructions from the Cook.

For instructions on how to manually modify the service configuration files generated by the setup
tool, see section 13.6.

12.4.4 Fridge Configuration Changes

In a production installation, where the Cook is using the Fridge as a cache, it is important to be
aware of the fact that if the media URL configured in the Content Store publication properties file is
changed, this change will not be passed through to the Cook, since the Fridge Stocker (Change Log

Copyright © 2017-2023 Stibo DX A/S Page 123

CUE Front Developer Guide

Daemon) does not log such changes. This means that either you have to manually remove the affected
publication object(s) from the Fridge after making such a change, or else deal with the problem by
adding something like this to your Fridge configuration:

location ~ ^/webservice/escenic/publication/.+ {
 proxy_pass $http_x_original_proto://$http_host$request_uri;
 proxy_cache_valid any 5m; # revalidate every five minutes.
 }

12.4.5 GraphQL Features

You do not need to make any changes to your GraphQL queries to support use of a public Cleaver
endpoint. Once the required configuration changes have been made, the GraphQL href_full filter
will automatically return correct image URLs with the configured media URL prefixes. However, one
new feature has been added which you may find useful during development.

The href_full filter now has a useMediaURL parameter that can be set to true or false. It allows
you to override the useMediaURL setting specified in cook-config.yaml:

fragment imageFields on Representation {
 href_full(useMediaURL: true)
 width
 height
}

This allows you to experiment by switching the use of the public Cleaver endpoint on in individual
queries. Alternatively, once you have enabled use of the public Cleaver endpoint in general by setting
useMediaURL to true in cook-config.yaml, you can use this parameter to switch it off for
individual queries.

12.5Error Logging
The format of the Cleaver's log output is defined in a log configuration file called logging.conf,
supplied in the CUE Front start pack's Cleaver service folder (path/cue-front/service/
cleaver). You can in change the log out by editing this file, path/cue-front/service/cleaver/
logging.conf. The supplied file contains the following settings:

[loggers]
keys=root

[handlers]
keys=consoleHandler,detailedConsoleHandler

[formatters]
keys=normalFormatter,detailedFormatter

[logger_root]
level=ERROR
handlers=detailedConsoleHandler

[handler_consoleHandler]
class=StreamHandler
level=DEBUG
formatter=normalFormatter

Copyright © 2017-2023 Stibo DX A/S Page 124

CUE Front Developer Guide

args=(sys.stdout,)

[handler_detailedConsoleHandler]
class=StreamHandler
level=DEBUG
formatter=detailedFormatter
args=(sys.stdout,)

[formatter_normalFormatter]
format=[%(asctime)s] %(levelname)s: "X-Request-Id: %(X-Request-Id)s" %(message)s

[formatter_detailedFormatter]
format=[%(asctime)s] %(levelname)s: "X-Request-Id: %(X-Request-Id)s" %(message)s [in
 %(pathname)s:%(lineno)d]

Copyright © 2017-2023 Stibo DX A/S Page 125

CUE Front Developer Guide

13 The Setup Tool

The CUE Front setup tool is intended to simplify the configuration of the CUE Front components.
Currently, setup only supports Docker-based installations. setup is a command line tool that runs in
a Docker container.

If you don't use setup, then configuring CUE Front involves editing a number of different
configuration files. In some cases, the same value must be specified in several places, both within
the same file and in different files. It is relatively easy to make mistakes during this process. setup
simplifies this task by issuing a series of prompts and using your responses to generate all these files.
The tool carries out this task in two phases:

add
Prompt for values, create a configuration set folder and save the responses in a
blueprint.yaml file in the folder (cue-front/configuration-name/blueprint.yaml, for
example).

generate
Generates a set of configuration files by merging the responses in cue-front/configuration-
name/blueprint.yaml with the default configuration files in the cue-front/setup/
defaults folder. The generated configuration files are saved together with blueprint.yaml
in the configuration folder.

setup has two corresponding subcommands that execute these phases:

add
Executes the add and generate phases for a named configuration set.

generate
Executes the generate phase for a named configuration set.

In addition to add and generate setup has the following subcommands:

login
Prompts for the credentials needed to download software from Stibo DX's repositories.

edit
Lets the user modify an existing configuration set.

list
Lists the names of all available configuration sets.

help
Displays a short help message listing setup's subcommands.

The setup command must always be run in the cue-front folder.

13.1Initializing Setup
In order to be able to function, setup needs access to the Stibo DX repositories. Before you do
anything else, therefore, you need to supply your login credentials. The setup uses these credentials to
acquire and store an authentication token it can use when downloading software from the repositories.

Copyright © 2017-2023 Stibo DX A/S Page 126

CUE Front Developer Guide

To initialize setup, use the login subcommand as follows:

cd cue-front-path/setup
docker-compose run setup login username

where username is the account name you use to access Stibo DX software repositories.

setup displays the following prompts:

Password for username
Enter your password.

13.2Creating a New Configuration
To create a new configuration, use the add subcommand as follows:

cd cue-front-path/setup
docker-compose run setup add configuration-set

where configuration-set is the name you want to use for the new configuration.

setup displays the following prompts:

Enabled services
Specify the CUE Front services you want to be enabled. Press the up and down arrows to move
the focus through the options, and press the space bar to select or deselect services. You can use
the all and none options to select and deselect all the service options. Press Enter when you
are satisfied with your selection.

Configuration
Specify what kind of configuration you want to carry out:

Quick
Only the most important configuration settings are displayed - default values are used for
all the other settings.

Advanced
All configuration settings are displayed.

setup then displays a further sequence of prompts, requesting parameter values for the services you
have decided to enable. How many prompts are displayed for each service depends on whether you
selected Quick or Advanced configuration.

When you have responded to all the prompts, setup does the following:

1. Saves your responses in path/cue-front/setup/configuration-set/blueprint.yaml.

2. Generates a set of configuration files from the blueprint and saves them in the same folder.

This means you can now start CUE Front using the configuration you created by entering the
command:

cd cue-front-path/configuration-set
docker-compose up -d

Copyright © 2017-2023 Stibo DX A/S Page 127

CUE Front Developer Guide

13.3Regenerating a Configuration
The easy way to modify a configuration is to use setup edit (see section 13.5). You can, however,
also do it by manually editing a configuration's blueprint.yaml file and then regenerating the
configuration from the blueprint as follows:

cd cue-front-path/setup
docker-compose run setup generate configuration-set

In order to see the effect of the changes you have made, you now need to rebuild and restart all the
CUE Front containers:

cd cue-front-path/configuration-set
docker-compose build
docker-compose down
docker-compose up -d

If you do not see any effect from the changes you have made, try rebuilding again, this time
specifying a --no-cache option with the build command:

docker-compose build --no-cache
docker-compose down
docker-compose up -d

13.4Switching Configurations
If you have created more than one configuration, you can switch between them as follows:

1. Stop and remove the current set of CUE Front containers:

cd cue-front-path/old-configuration-set
docker-compose down

2. Restart specifying a different configuration set:

cd cue-front-path/new-configuration-set
docker-compose up -d

where new-configuration-set is the name of the configuration you want to switch to.

13.5Modifying a Configuration
To modify an existing configuration, use the edit subcommand as follows:

cd cue-front-path/setup
docker-compose run setup edit configuration-set

where configuration-set is the name of the configuration you want to modify.

The edit subcommand basically works in the same way as the add subcommand – it displays the
same sequence of prompts. In this case, however, the default values offered by setup are not the
standard defaults, but the configuration set's existing values. This means you can just accept all
defaults except for the specific values you want to modify.

Copyright © 2017-2023 Stibo DX A/S Page 128

CUE Front Developer Guide

In order to see the effect of the changes you have made, you now need to rebuild and restart all the
CUE Front containers:

cd cue-front-path/configuration-set
docker-compose build
docker-compose down
docker-compose up -d

If you do not see any effect from the changes you have made, try rebuilding again, this time
specifying a --no-cache option with the build command:

docker-compose build --no-cache
docker-compose down
docker-compose up -d

13.6Overriding Setup Defaults
The values prompted for when you add a new configuration, and the default values offered by setup
are all defined in the setup/defaults folder. This folder contains a set of default configuration files
(cook-config.yaml, fridge-config.yaml, cleaver-config.yaml, docker-compose.yml
and waiter-config.yaml) plus a blueprint.yaml file that defines:

• The values setup add is to prompt for

• The prompt texts to display

• Defaults for the prompted values

When you create a CUE Front configuration using the setup add myconfig command, the setup
utility:

1. Displays the sequence of prompts defined in CUE Front's setup/defaults/blueprint.yaml
file.

2. Creates a cue-front/myconfig folder and saves your responses in cue-front/myconfig/
blueprint.yaml.

3. Merges the values in cue-front/myconfig/blueprint.yaml with the default configuration
files in the cue-front/setup/defaults folder

4. Saves the merged configuration files in the cue-front/myconfig/ folder together with
blueprint.yaml.

If you wanted to change the setup defaults, you could do so by modifying these files. You could,
for example, change the default value for one of the setup prompts by editing setup/defaults/
blueprint.yaml, or you could change the content of all the cook-config.yaml files generated by
the setup tool by editing setup/defaults/cook-config.yaml. However, any changes you made
in this way would be overwritten the next time CUE Front was upgraded.

The correct way to override the supplied defaults, therefore, is to create a copy of the cue-front/
setup/defaults folder in your publication repo, and edit the copied files. When setup add is run,
it will actually check your publication repo first, and if it finds any setup defaults, use those instead of
the defaults supplied with CUE Front.

In detail, do as follows to create your own customized set of defaults:

Copyright © 2017-2023 Stibo DX A/S Page 129

CUE Front Developer Guide

1. Copy the setup defaults folder from the CUE Front folder to your publication repo:

mkdir publication-path/setup
cp cue-front-path/setup/defaults/ publication-path/setup/

2. Delete any copied files that you don't intend to modify, for example:

cd publication-path/setup/defaults/
rm cook-config.yaml fridge-config.yaml cleaver-config.yaml docker-compose.yml

You should always delete docker-compose.yml from your publication setup/defaults
folder. Currently, it is not possible to customize the default docker-compose.yml file.

3. Edit the files to meet your needs.

When editing actual configuration files in your override folder (i.e, waiter-config.yaml in this
case), simply make the changes you need. When editing blueprint.yaml, however, you should edit
the entries you want to change and delete all the other entries. In this way, only the settings you
are actually interested in will be overridden. If, for example, you want to change the default value of
the Waiter's devmode property to false, then you can do so by creating a blueprint.yaml file that
contains just the following lines:

waiter:
 devmode:
 advanced: true
 default: false

If you want to prevent setup from prompting for a value rather than just modify the default, you can do
so by adding the following property:

 condition: "false"

to its definition. For example:

waiter:
 devmode:
 advanced: true
 default: false
 condition: "false"

Note that the condition property must be a string, "false", not a boolean value.

If you want to remove a property completely from the output blueprint.yaml file generated by
setup add, then you can do so by setting the default value to nothing and adding condition:
"false". The following, for example, completely removes the Waiter's publications-name
property from the output blueprint.yaml file:

waiter:
 publications-name:
 message: "Publication-name"
 default: ""
 condition: "false"

For an example of why you might need to be able to do this, see section 13.7.

Copyright © 2017-2023 Stibo DX A/S Page 130

CUE Front Developer Guide

13.7Multi-publication Support
The prompts displayed by setup do not offer the option of creating more than one publication. CUE
Front, however, is designed to support multiple publications. Once you have used the setup utility to
get up and running with a single publication, you can switch to a multi-publication configuration by
overriding the setup defaults as described in section 13.6.

Since setup add cannot prompt for multiple publications and blueprint.yaml cannot store
settings for multiple publications, the recommended way to add extra publications to your setup is as
follows:

1. Make a copy of the setup defaults folder in your publication repo, and delete everything except
blueprint.yaml and waiter-config.yaml.

2. Add the multiple publication settings to your-publication/setup/defaults/waiter-
config.yaml by manually editing the file.

3. Remove the publication prompt definitions from your-publication/defaults/
blueprint.yaml by manually editing the file.

4. Run setup add to generate a new configuration containing the multiple publication definitions.

5. Add information about your new publications to the nginx configuration file, waiter/docker/
nginx.conf.

6. Restart the Waiter and nginx.

These steps are described in greater detail in the following sections.

13.7.1 Copy Setup Defaults

Copy setup/defaults/waiter-config.yml folder from the CUE Front folder to a setup folder
in your publication repo:

mkdir publication-path/setup
cp cue-front-path/setup/defaults/waiter-config.yml publication-path/setup/

13.7.2 Add multiple publication settings

Open publication-path/setup/defaults/waiter-config.yml in an editor. The first block of
entries at the top of the file defines the publications the waiter is to serve, but there will only be entries
for one publication:

publications:
 - name: 'my-publication-name'
 hostNames:
 - 'localhost'
 templateDir: '../templates/_base'

Replace these entries with entries defining all the publications you want the waiter to serve:

publications:
 - name: tomorrow-online
 hostNames:
 - localhost
 templateDir: ../templates/_base
 - name: mypub

Copyright © 2017-2023 Stibo DX A/S Page 131

CUE Front Developer Guide

 hostNames:
 - mypub.com
 templateDir: ../templates/mypub
 - name: myotherpub
 hostNames:
 - myotherpub.com
 - myotherpub.net
 templateDir: ../templates/myotherpub

The properties should be set as follows:

name
The name of a publication in your Content Store.

hostNames
One or more entries, each of which is a domain name at which this publication is to be served.

templateDir
The folder containing the publication templates. For more about this, see section 4.4.

In the example shown above:

• tomorrow-online will be made available at http://localhost:8100 and will look for
templates in the ../templates/_base folder.

• mypub will be made available at http://mypub.com:8100 and will look for templates in the ../
templates/mypub folder.

• myotherpub will be made available at http://myotherpub.com:8100 and http://
myotherpub.net:8100 and will look for templates in the ../templates/myotherpub folder.

13.7.3 Remove publication prompt definitions

Open cue-front-path/setup/defaults/blueprint.yml in an editor and remove the following
lines:

 publications-name:
 message: "Publication-name"
 default: "tomorrow-online"

 publications-hostNames:
 message: "Publication-hostname"
 default: "localhost"

This will prevent the setup add command from displaying these prompts.

13.7.4 Generate a new configuration

To create a new configuration run setup add:

cd cue-front-path/setup/
docker-compose run setup add configuration-set

where configuration-set is the name of your configuration.

If you want to modify an existing configuration, run setup edit instead.

Copyright © 2017-2023 Stibo DX A/S Page 132

CUE Front Developer Guide

13.7.5 Reconfigure nginx

Copy cue-front-path/service/waiter/docker/nginx.conf to publication-path/service/
waiter/docker/:

cp cue-front-path/service/waiter/docker/nginx.conf publication-path/service/waiter/
docker/

Open publication-path/service/waiter/docker/nginx.conf in an editor and add entries for
your new publications. The publication definitions you add must match the definitions you have added
to publication-path/setup/defaults/waiter-config.yml. The server section of the default
nginx.conf included in the CUE Front start pack looks like this (with comments removed):

 server {
 listen 8100;
 server_name localhost;

 root /srv/templates/_base;

 location / {
 try_files $uri @waiter;
 }

 location ~ \.css {
 root /srv/templates/_base;
 }

 location @waiter {
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME /srv/waiter/index.php;
 fastcgi_pass unix:/run/php/php7.0-fpm.sock;
 }

You need to make a copy of this section for each additional publication you want the Waiter to serve,
and modify the highlighted fields (server_name and root). For a myotherpub publication served
on myotherpub.com and myotherpub.net, you would need to add this server section:

 server {
 listen 8100;
 server_name myotherpub.com myotherpub.net;

 root /srv/templates/myotherpub;

 location / {
 try_files $uri @waiter;
 }

 location ~ \.css {
 root /srv/templates/_base;
 }

 location @waiter {
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME /srv/waiter/index.php;
 fastcgi_pass unix:/run/php/php7.0-fpm.sock;
 }

Copyright © 2017-2023 Stibo DX A/S Page 133

CUE Front Developer Guide

13.7.6 Restart the Waiter

To restart the Waiter (and nginx, which runs in the same container as the Waiter), enter:

docker-compose restart waiter

You should now have access to all the publications you have defined.

13.8Using Environment Variables in Configuration Files
In order to simplify the deployment of CUE Front applications in different environments, the following
configuration files:

cook-config.yaml
cleaver-config.yaml
waiter-config.yaml

support the use of shell environment variables. This makes it easy to tailor the configuration files to
different environments by replacing variable items such as URLs and port numbers in safe, robust
way.

In any of the three configuration files listed above, you can replace the value of a configuration
parameter with an environment variable reference, using standard shell syntax. You could for example,
replace:

resolverURI: 'https://engine:8080/resolver'

in a cook-config.yaml file with:

resolverURI: '${resolver}'

If

resolver=https://engine:8080/resolver

is set in the environment in which cook-config.yaml is used, then the effect will be the same.

Note that:

• The use of environment variables is only supported in the three configuration files listed above.
They cannot be used in any other configuration files (or any other CUE Front .yaml files).

• You can only use environment variables in the definition of parameter values, not for parameter
keys.

• You can use this technique to specify any kind of parameter value – string, number, boolean or
null. Booleans must be specified as either true or false in lower case characters, anything else
will be registered as a string.

• You can construct parameter values by concatenating environment variables and literals in the
usual way, for example:

resolverURI: '${resolverserver}:${resolverport}/resolver'

Copyright © 2017-2023 Stibo DX A/S Page 134

CUE Front Developer Guide

• Shell parameter expansion is supported, so you can use it to set a default value that will be used if
the specified environment variable is undefined. For example:

resolverURI: '${resolver:-https://engine:8080/resolver}'

In the above example, the value assigned to resolverURI will be used if it is available in the
current environment, but if resolverURI is undefined, then the default value https://
engine:8080/resolver will be used.

• If the value of a required parameter is specified by means of an environment variable, and that
environment variable is undefined, the missing parameter setting will be caught and reported in the
usual way.

In a standard CUE Front installation, the Cook, Cleaver and Waiter services run in docker containers,
so this is where the environment variables need to be set. In order to achieve this, you need to add your
environment variable definitions to the path/cue-front/setup/.env file.

Copyright © 2017-2023 Stibo DX A/S Page 135

https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html

CUE Front Developer Guide

14 Advanced Setup

The setup utility provides a simple means of installing and configuring CUE Front, and provides easy
access to the most commonly used configuration parameters. If you have more complex requirements,
however, you may need to set configuration parameters that are not exposed by the setup tool. Most
of a CUE Front installation's components include third-party tools that have their own configuration
files, and only a selection of the configuration parameters in these files can be modified using the setup
tool.

It is also the case that in a production environment, you may also want to exercise more control over
the update process than the setup utility provides. You may, for example, not want to accept changes
in the underlying configuration files that are "hidden" by the setup overlay without reviewing those
changes first.

CUE Front therefore provides an alternative configuration mechanism that you can use both to access
"hidden" configuration parameters and to exercise tighter control over the upgrade process.

All the CUE Front components are supplied in the start pack's service/ folder. It contains one
subfolder for each component or service:

cue-front-path/service
├── browsersync
├── cleaver
├── cook
├── fridge
├── fridge-stocker
├── rsync
├── styleguide
├── styles
└── waiter

Each of these folders contains everything needed to spin up the service in a Docker container,
including all configuration files. When the setup tool generates a configuration, it does by using the
.yaml files you have created using setup to modify a copy of the corresponding service definition. A
Fridge service definition, for example, is generated by applying the settings in cue-front-path/your-
config/fridge.yaml to a copy of cue-front-path/service/fridge. It is this final service definition
that is used by Docker to create the service.

If you need to change a Fridge configuration parameter that is not exposed by the setup tool, you could
in theory do so by simply modifying it in the start pack service definition:

cue-front-path/service/fridge
├── Dockerfile
├── fridge.conf
└── fridge.html

and regenerating your configuration using setup (see section 13.3). This would only work until the next
time you upgraded CUE Front, however, at which point your changes would be overwritten.

The correct way to do this is to create a copy of the cue-front-path/service/fridge folder in your
publication repo, and edit the copied files. When setup generate is run, it will actually check
your publication repo first, and if it finds any service definition override files, use those instead of the
default files supplied with CUE Front.

Copyright © 2017-2023 Stibo DX A/S Page 136

CUE Front Developer Guide

In detail, do as follows to customize a service:

1. Copy the service definition from the CUE Front folder to your publication repo:

mkdir publication-path/service
cp -r cue-front-path/service/service-name publication-path/service/

2. Delete any copied files that you don't intend to modify, for example:

cd publication-path/service/fridge/
rm Dockerfile fridge.html

3. Edit the remaining files to meet your needs.

4. Run setup generate to regenerate your configuration (see section 13.3).

In order to customize a service in this way you need to have knowledge of the technologies on which
the service is based. The Fridge's fridge.conf, for example, is actually an nginx configuration file.
If you are not already familiar with nginx you will need to consult the nginx documentation before
making any changes.

The service configuration files supplied in the CUE Front start pack may change between versions.
If you create service override files as described in this section, then you are responsible for ensuring
that they remain up-to-date with changes in the delivered versions. If you do not do so, there is a
possibility that a service may fail or misbehave after upgrading.

Copyright © 2017-2023 Stibo DX A/S Page 137

CUE Front Developer Guide

15 Setting up Tomorrow Sport

This chapter tells you how to:

• Set up Tomorrow Sport as a sister publication to Tomorrow Online

• Enable cross-publishing between the two publications

The tomorrow-online-1.22.2-3.zip package contains everything you need to set up a sister
publication called Tomorrow Sport alongside Tomorrow Online. This publication mostly uses the
same templates as Tomorrow Online, with just a few overlay templates to distinguish it from the main
publication. The package also contains everything needed to allow Tomorrow Online to cross-publish
content from Tomorrow Sport.

15.1Create Tomorrow Sport
The procedure described in this section is a short cut to setting up Tomorrow Sport as a sister
publication to Tomorrow Online. For a general description of how to serve multiple publications
based on a single publication definition, see section 13.7.

To create and publish Tomorrow Sport:

1. Create a new publication in the Content Store called tomorrow-sport, using the publication
definition called tomorrow-sport-with-content.zip which you will find in the tomorrow-
online/publication/dist folder. This file is identical to the tomorrow-online-with-
content.zip file that you used to create Tomorrow Online, except for its content, which is
exclusively sport-related. For instructions on how to create new publications in the Content Store,
see http://docs.escenic.com/ece-install-guide/7.1/create_a_publication.html.

2. Give your CUE Front user (that is, the user the Cook uses to log in to the Content Store) a
minimum of read access to the new publication. If you just accepted defaults when installing
CUE Front, then the Tomorrow Online admin user (tomorrow-online_admin) is your CUE
Front user. If you also use this user for working in CUE, then you will probably want to give this
user read/write access to Tomorrow Sport. If you use a different user for working in CUE, then
you can just give read access to the CUE Front user, and read/write access to your editing user.
For general information on how to create and manage users and user access rights, see the CUE
 Content Store Publication Administrator Guide.

3. Copy waiter-config.yml from your publication-path/contrib/tomorrow-sport/ folder
to publication-path/setup/defaults/. For example:

mkdir -p publication-path/setup/defaults
cp publication-path/contrib/tomorrow-sport/waiter-config.yml publication-path/
setup/defaults/

The contents of waiter-config.yml are based on the assumption that your publications are
called tomorrow-online and tomorrow-sport. If this is not the case, then you will need to
open the file and edit it.

4. Open the blueprint.yml file in your config folder (cue-front-path/myconfig/
blueprint.yml, for example) in an editor, and remove the following lines:

 publications-name: tomorrow-online

Copyright © 2017-2023 Stibo DX A/S Page 138

http://docs.escenic.com/ece-install-guide/7.1/create_a_publication.html
http://docs.escenic.com/ece-pub-admin-guide/7.1/
http://docs.escenic.com/ece-pub-admin-guide/7.1/

CUE Front Developer Guide

 publications-hostNames: localhost

From the waiter: section of the file.

5. Copy nginx.conf from the publication-path/contrib/tomorrow-sport/ folder to
publication-path/service/waiter/docker/. For example:

cp publication-path/contrib/tomorrow-sport/nginx.conf publication-path/service/
waiter/docker/nginx.conf

6. Open the copied file for editing and change this line:

 server_name sister.publication.hostname;

Replace sister.publication.hostname with whatever host name you want to use for the
Tomorrow Sport site. For example:

 server_name tomorrow-sport;

7. Remake your config by running setup generate. For example:

cd cue-front-path/setup
docker-compose run setup generate myconfig

8. Open your hosts file (/etc/hosts on MacOS and Linux, c:\Windows\System32\Drivers
\etc\hosts on Windows), for editing and add your selected host name as an alias for the IP
address 127.0.0.0. For example:

127.0.0.1 localhost tomorrow-sport

9. Rebuild and restart the Waiter:

docker-compose build waiter
docker-compose restart waiter

You should now be able to access Tomorrow Online on http://localhost:8100 as before, and
Tomorrow Sport on http://tomorrow-sport:8100. Tomorrow Sport should have different
content and a different appearance than Tomorrow Online.

If you now overwrite your myconfig setup by running setup add then you will break this
configuration. To prevent the risk of this occurring, you can open the default blueprint.yml file
(cue-front-path/setup/defaults/blueprint.yml) in an editor and remove these lines:

 publications-name:
 message: "Publication-name"
 default: "tomorrow-online"

 publications-hostNames:
 message: "Publication-hostname"
 default: "localhost"

from the waiter: section of the file. This will prevent setup add from prompting for a
publication name and host name.

15.2Cross-Publishing from Tomorrow Sport
If you have set up your user permissions correctly as described in step 2 of section 15.1, then you
should now be able to cross-publish content from Tomorrow Sport to Tomorrow Online. That is, when
editing Tomorrow Online in CUE, you should be able to find content belonging to Tomorrow Sport

Copyright © 2017-2023 Stibo DX A/S Page 139

CUE Front Developer Guide

and desk it in Tomorrow Online. It will then appear on the Tomorrow Online website as if it were
Tomorrow Online content.

The Tomorrow Online front page has a "Latest in Sports" section at the bottom that by default
displays teasers for content in the Tomorrow Online Sport section. This content is selected by a data
source called latest_sport.graphql, which you can find in the publication-path/recipe/
datasources folder:

{
 and {
 publication
 field(name:"home_section_name", value:"Sport")
 or {
 type(names: ["story","legacystory"])
 }
 }
}

The publication-path/recipe/datasources folder also contains an alternative version of this data
source called latest_sport_tomorrow_sport.graphql, which selects content from Tomorrow
Sport instead of from the Tomorrow Online Sport section:

{
 and {
 publication(name: "tomorrow-sport")
 field(name:"home_section_name", value:"News")
 or {
 type(names: ["story","legacystory"])
 }
 }
}

You can therefore switch from displaying local sports content to cross-published sports content on
the front page by making the following change to line 2 of the the GraphQL query that assembles
content for the Tomorrow Online front page (publication-path/recipe/queries/index-page-
ece_frontpage.graphql):

 latest_sport: datasource(name:"latest_sport_tomorrow_sport") {

Copyright © 2017-2023 Stibo DX A/S Page 140

CUE Front Developer Guide

16 Publication Extensions

A publication extension is a bundle of functionality that can be added to any standard CUE Front
publication. It typically consists of one or more new content types plus everything needed for CUE
Front to render them: recipe extensions, GraphQL code, datasources, Twig templates and Waiter
extensions. In order to ensure that it can be easily applied to any publication, an extension must be
organized in a standard folder structure and packaged in a zip file.

Extending a publication with a correctly packaged extension doesn't involve much more than
unzipping the extension into the publication folder. It is, however, also necessary to be careful with
the naming of files: if an extension file has the same name and location in the structure as a file in the
original publication, then it will overwrite it, so you should take care to avoid this. It is also the case
that sometimes you may need to manually edit some publication files in order to make an extension
work properly. This is typically the case with GraphQL code, since CUE Front does not provide any
extension hooks or plug-in mechanism for GraphQL code.

16.1Publication Extension Structure
A publication extension must be a zip file that adheres to the following structure:

publication/
 escenic/
 content-type/
 content-types
recipe/
 datasources/
 data-sources
 queries/
 graphql-queries
 extensions/
 recipe-extensions
templates/
 _annotations
 -data
 _layouts
 _meta
 _patterns/
 _twig-components
 placeholders
 theme
setup/
 defaults/
 setup-defaults
service/
 waiter/
 waiter-extensions/
 Extensions/
 waiter-extensions

Copyright © 2017-2023 Stibo DX A/S Page 141

CUE Front Developer Guide

where:

content-types
Are one or more modular content type resource files containing definitions of content types you
want to add to a publication. For information about modular content type files, see The content-
type Resource.

data-sources
Are one or more GraphQL files containing data source definitions you want to add to a
publication. See chapter 7 for more information about data sources.

graphql-queries
Are one or more GraphQL files containing GraphQL queries you want to add to a publication.
See section 4.2 for more information about GraphQL.

recipe-extensions
Are one or more Javascript files containing recipe extensions you want to add to a publication.
See chapter 8 for more information about recipe extensions.

setup-defaults
Is a YAML file containing setup defaults you want to add to a publication. Any settings in this
file will override the publication's existing settings. See section 13.6 for more information about
setup defaults.

waiter-extensions
Are one or more PHP files containing waiter extensions you want to add to a publication. See
chapter 5.

The templates folder must be a standard publication template folder containing the template
patterns, layouts, CSS, Javascript and so on that you want to add to a publication.

16.2Applying a Publication Extension
To apply a publication extension to a publication:

1. Copy the extension .zip file into the root folder of the publication. For example:

cp myextension.zip ~/publications/mypublication/

2. Unzip the extension. For example:

cd ~/publications/mypublication/
unzip myextension.zip

3. Make any additional adjustments that are necessary (editing GraphQL queries, for example).

4. If the extension includes any new content types, then you will need to update the publication's
GraphQL schema. For details of how to do this, see section 4.1.

Copyright © 2017-2023 Stibo DX A/S Page 142

http://docs.escenic.com/ece-pub-design-guide/7.3/the_content_type_resource.html
http://docs.escenic.com/ece-pub-design-guide/7.3/the_content_type_resource.html

