CUE
Tech Guide

3.15.17-3



Table of Contents

1 INSEAIING CUE. ... ittt e e ettt e e e st e e s e s b et e e e e bbbt e e e e b b et e e s e nbre e e e e aannes 5
2 CoNfIGUING CUE.... ..ottt ettt et e e 1 bttt e s st e e s ea bt e e s s s et e e s aabn e e e e s annnneee s 7
2.1 MANAAIOIY TASKS. ...cciittiieeeiitti ettt e et e e s et e e e e sk et e e s st b e e e e e s aanre e e e s anrneeeenns 7
2.1.1 BasiC CUE CONfIQUIALION. .......coiitiriieeiitiiiee ittt e et e st e st e e e e e s snnneee e s e 7

2.1.2 NQINX CONFIQUIALION. ... .eiiiieiiiieiee ettt 8

2.1.3 Web Service CORS CONfIQUIALION. ........ciiuriiieiiiiiiiee it 9

2.2 OPLONAI TASKS......uteiiiiiiiiii ettt s st e s 10
2.2.1 Third-Party AUtheNtiCAtION...........coiiiiiiiiiiiii e 10

2.2.2 Create NEW DialOg..........uveiieiiiiiiee ettt 12

2.2.3 HEAAING LEVEIS. ....ceiiiiiiiiiie ittt e e 13

2.2.4 AUtOMALIC diV REMOVAL........cciiiiiiiiiiiiiiiieee et 13

2.2.5 Content Type Selection for BiNAriS. ..........cueiiiiiiieiiiiiie e 14

2.2.6 DefiniNg CUSIOM ICONS.....cciuiiiiieiiiiite ettt 15

2.2.7 Metadata Panel SECLONS..........ccciiiiiiiieiiiiie ettt 15

2.2.8 CUE Composer Integration for StOrylines..........cc.eveeviiiiiieeiiiieiee e 18

2.2.9 SMAIt QUOLES......cciiiiiiiiiiie ettt er e e e s s e e a e 21
2.2.10 SPEIING CRECKET ...ttt 22
2.2.11 Semantic Shortcut Key CombiNation...........ceevveiiiiiiiieiiiiieeee e 23
2.2.12 Content Creation SNOIMCULS. ..........cuviiieiiiiie et 24
2.2.13 The PUbIiSN SNOMCUL........ceiiiiiiiiiie it 25
2.2.14 Content Card DAt TYPE.......uuiieiiiriiiee ittt e ettt 25
2.2.15 Storyline SYMbBOI INSEITION.........eiiiiiiiiieie i 26
2.2.16 Section Page Metadata Panel Width..............cocveveiiiiiiiii e 27
2.2.07 SEAICN FlLEIS.....eeeiiiiiitiee et 28
2.2.18 Dashboards (Content StOre ONIY)........coovueiieeiriiiiee e 30
2.2.19 Asset Picker Custom Search Filters (Content Store only)........cccceevvvveeeeeiiiiieeeeene 31
2.2.20 AULOSAVE INLEIVAL........eiiieiiiiiie ittt 32
2.2.21 QUICK VIBW. ...ttt ete e ettt e ettt et e e e e e e s e e ann bbbt e et e e e e e e e e e e e annbnbeneeeeas 32
2.2.22 HTML SOUICE EdItiNg.....c.cuvviiieiiiiiiiee ittt 33
2.2.23 Cleaning up Pasted CONENT..........ooeiiiiiiiieiiiiiei et 33
2.2.24 CUE Print ACCESS fOI FrEEIANCEIS. ......ccciiiiiiiiei ittt 34
2.2.25 Teaser Anchors in Section Page PreVIEWS..........ccuuvvieiriiiiieniiiiiiee e 34
2.2.26 Metadata Panel Section List LENGth.........c..coeiiiiiiiiiiiii e 35

2.2.27 Default Tag REIEBVANCE. ......... it e e e s e e e 36




2.2.28 Sections Side PANEl PrEVIEW.......c.ccuuuuiiiiiiieiiie et e e e st e e e e s eaaa e e s eees 36

2.2.29 Storyline Metrics (Content Store 0nly).........ccccvvvviiniiiiniicii e, 36
2.2.30 Preview Control DIAlOJ.........civueeirereiirieairiestieeesireessinee e snnne e 41
2.2.31 Inline Link Target Window Default............ccoovviiiieiiiineieeee e 41
2.2.32 Date Picker Default TiME........c.eiiieieiiiieiiie e 42
2.2.33 CUE Print Handling in Create New Dial0g........c.cccovvuveiiireeiiee e sieeesiee e senee e 42
2.2.34 Access Token RefreShment TiMiNg.......c.coovveverieieniire i 42
2.2.35 ENVironment ViSULIZAION. ..........cveiirriiiiieeiiiie et 43
2.2.36 Disabling SearCh-AS-YOU-TYPE......ccuveiirieiiiieiiiee et 43
2.2.37 Enabling USEr TracCKiNg.........ccocvereiieieiiiie et 43

3 Installing and Configuring PIUG-iNS...........cccooiiiiiiiiiiie e 45
3.1 cue-content-duplication-enriChMENt-SEIVICE.............cveiriiei e 46
3.1.1 Installing cue-content-duplication-enrichment-Service............ccccovvveireenineesnveeennn 46

3.1.2 Configuring cue-content-duplication-enrichment-Service............ccccoevveriveeinneeennnen. 46

4 EXTENAING CUE ...ttt ittt e e et e ra e e st e e s n et e ssne e e aa s et e aane e e sann e e e nbneesnneeennneean 48
4.1 WED COMPONENLS. ....ciiiiiiiiitiie ittt e s b et e st e e e ss e e e snr e e e anr e e snne e e srneennnees 48
4.1.1 Creating a Web COMPONENL.........cciiiiiiiiie e 49

4.1.2 The CUE Web Component APL........cccuuiiiiiiiiie et 51

4.2 ENFICAMENT SEIVICES. ....ciuteieiiiiieiitiee ettt ettt et st e st e e st e s nnreeennn e e s nnneeens 122
4.2.1 Configuring Enrichment Services in CUE..........cocoveiiieiniee e 123

4.2.2 Creating an Enrichment SEIVICE..........ceoviviiriiieiiee e 130

4.2.3 Multi-select ENfiChmMent SEIVICES. .......c.uviiiveiiiiie it 132

4.2.4 SOME EXAMPIES.....coiiiiiiiiiieiiiie ettt ettt n e nn e nnee s 133

4.2.5 Learning More About ENrichment SErviCes..........ccccevvveiiiieiiiee e 136

4.3 DIOP RESOIVELS. ...coitiieiiiiie ittt etttk et e st e st e s n e e e nmr e e n e e e snne e e nnne e e nnnneenanes 136
4.3.1 Configuring Drop ResoIVEers in CUE..........coccviiiieeeiiie e 136

4.3.2 Drop RESOIVEr PAramMEterS.......ccvvveireieiieieiiieessireessiree e sneeesiree e e e snne e nnnee e 138

4.3.3 Drop ResoIVer REtUIN VAIUES..........cccvviiiiieiiiee ittt 138

4.4 URL-based Content CrEaLION. ...........cuveiririeiiieieriee et e sttt ssree e e e e e e s nnneenas 139
4.4.1 Content Creation URL STIUCIUIE..........ccvviiiieeiiiee e 139

4.4.2 EXAMPIE SCHPL......ooiiiiiiieiie i 142

4.5 URL-based Content EQItING.........coverrereiirieiiiie e 143
4.5.1 Content Editing URL SEIUCKIUIE.........cvviiiiieiiiie et 143

G oo [o 10 A I o o[ £ OO 144
4.7 CUE SAf@ MOGE......cciiiiiiiiie ittt ettt st e e nn e s e e s e e s e e nnre e e s nnees 144
4.8 Custom Capabilities (Content Store ONIY)..........coceeiuiiiieriiinie e 145

LR DL O 11 (=T (7= 110 ) o R 147




5.1 DC-X Drop ResOIVEr INStAAtioN. ........uuuiiiiiiiiiieie ettt s e e e e s e eab e e eaees 147

5.2 DC-X EXtension CoNfiQUIation............ccueviiieeiiiireiiie e 147
5.2.1 Endpoint CONfIQUIALION. .......ccveieriiieeiiiee ittt 148
5.2.2 Side Panel ConfigUration............cooveeiieeeiiieeiiee e 148
5.2.3 Drop Resolver Configuration.............cuveiieeeiineeniiee e 149
5.2.4 Content Type CoNfiQUIatiON..........cciiviiiiiieiiiie et 150
5.2.5 Zipline COoNfIQUIALION. ........vviiiiiieiiiee ittt 150
5.3 LOGIN CredeNLIAIS. ......oee ittt ettt sn e nnne e 157
5.4 Using The Main DC-X INLEQIAtION. ......cccivieiirrererieeesiiere s e s e ssnree e sinee e e snnee s 157

5.5 Using The DC-X Wil INtEOIatiON......cciiveeeeieieeiietie e e eeetiee e e e e e e e e e e e s e e e s e e e seebaans 159




CUE Tech Guide

1 Installing CUE

CUE requires the use of an SSE Proxy to manage the delivery of Server-sent Events from the CUE
Content Store to CUE clients. This means that an CUE SSE Proxy must have been installed and
configured to manage SSE for the Content Store, and the Content Store must have been configured
to direct SSE connection requests to the SSE Proxy. For general information on how to install

and configure an SSE Proxy, see the SSE Proxy documentation. For specific guidance on how to
configure the Content Store and the SSE Proxy to work together with CUE, see Configure an SSE
Proxy Connection for CUE.

CUE is available as a standard Debian installation package, making installation on Ubuntu or other
Debian-based Linux systems very straightforward. CUE is a standalone web application. Although it
needs to be connected to an CUE Content Store and/or a CCI Newsgate back end, it does not need to
be co-located with either of them. It can be installed on the same server as a Content Store instance,
but it does not need to be. An application server such as Tomcat is not required to serve CUE. Since it
is a pure HTML/Javascript application, a web server such as nginx or Apache is sufficient.

A note about version code names

CUE and all related applications (CUE Content Store, CUE Print, Content Store plug-ins and so on)
are released on a synchronized schedule where all product versions in a given release are known to
work well together. Only these approved version combinations are supported. Each set of compatible
product versions is identified by a code name, and during installation you can use this code name
instead of the individual product's version number, thereby simplifying the installation process.

In the case of CUE and other Linux applications installed on Ubuntu using apt, the code name is
actually the name of a repository containing compatible versions of all products. This means that in
order to ensure version compatibility, all you need to do is add the name of the required repository to
your /etc/apt/sources.list.d/escenic.list file. Once you have done this you do not need
to specify any version numbers when installing individual packages - apt will just install the latest
maintenance release from that repository.

Note that code names cannot be used in this way on Red Hat installations, where the application
packages to be installed must still be identified by their version numbers. This is also the case for
CUE Print.

The code name for CUE 3.15.17-3 is oxygen. To find the correct CUE Print version to install for the
oxygen release, check the CUE Print release notes.

Installation procedure
The instructions given here are based on the use of an nginx web server, running on Ubuntu.
To install CUE:

1. Login via SSH from a terminal window.

2. Switch user to root:

$ sudo su

Copyright © 2015-2023 Stibo DX A/S Page 5


http://docs.escenic.com/sse-proxy.html
http://docs.escenic.com/ece-install-guide/7.15/configure_an_sse_proxy_connection_for_cue.html
http://docs.escenic.com/ece-install-guide/7.15/configure_an_sse_proxy_connection_for_cue.html
http://customer.ccieurope.com/documentation/release-notes/cci-newsgate.aspx

CUE Tech Guide

3. Ifnecessary, download and set the Escenic apt repository key:

# curl --silent https://user:password@apt.escenic.com/repo.key | apt-key add -

where user and password are your Stibo DX download credentials (the same ones you use to
access the Stibo DX Maven repository). If you do not have any download credentials, please
contact Stibo DX support.

4. Add the current version repository name to your list of sources.

# echo "deb https://user:password@apt.escenic.com oxygen main non-free" >> /etc/
apt/sources.list.d/escenic.list

5. You need to install version 1.7.5 or higher of nginx. The version available in the Ubuntu 14.04
repositories is too old, so in order to ensure that you install a new enough version, you need to
add a repository containing a more recent version:

# add-apt-repository ppa:nginx/stable
6. Update your package lists:

# apt-get update
7. Download and install CUE:

# apt-get install cue-web

8. Download and install nginx

# apt-get install nginx

Copyright © 2015-2023 Stibo DX A/S Page 6


mailto:support@escenic.com

CUE Tech Guide

2 Configuring CUE

In order to complete the installation of CUE, you must:
« Carry out a basic configuration of CUE itself and the nginx web server that serves the CUE

application.

« Configure nginx to support cross-origin communication between CUE and the CUE Content Store's
web service

These mandatory configuration tasks are both described in section 2.1.

There are in addition a number of more or less optional configuration tasks that you may need to carry
out, depending on your specific requirements. These tasks are described in section 2.2.

2.1 Mandatory Tasks

The configuration tasks described in this section are required in order to get CUE up and running.

2.1.1 Basic CUE Configuration

CUE configuration involves configuring CUE itself, and also configuring the nginx web server that
serves the CUE application.

The actual CUE configuration consists of editing YAML format configuration files, identified by the file
type extension .yml. The delivered system includes a number of such configuration files containing
CUE's default configuration settings. These files are located in the /etc/escenic/cue-web folder.

The /etc/escenic/cue-web folder also contains a file called config.yml. template, containing
the property settings that you always need to set when installing CUE. To use this file you rename it to
config.yml and then edit the contents.

To configure CUE:

1. If necessary, switch user to root.

$ sudo su
2. Copy /etc/escenic/cue-web/config.yml.template to config.yml:

# cp /etc/escenic/cue-web/config.yml.template /etc/escenic/cue-web/config.yml
3. Open the new /etc/escenic/cue-web/config.yml for editing. For example

# nano /etc/escenic/cue-web/config.yml

4. Uncomment and set the required endpoint parameters (which you will find at the top of the file):

endpoints:
escenic: "http://escenic-host:81/webservice/index.xml"

Copyright © 2015-2023 Stibo DX A/S Page 7



CUE Tech Guide

newsgate: "http://newsgate-host/newsgate-cf/"

where:
» escenic-host is the IP address or host name of the Content Store CUE is to provide access to

» newsgate-host is the IP address or host name of the CCI Newsgate system CUE is to provide
access to. If no CCI Newsgate system is present, then do not uncomment the newsgate: line.

5. If your CUE configuration makes use of an Escenic-CCI Newsgate bridge, then you will need to
add a third line under endpoints:

endpoints:
escenic: "http://escenic-host:81/webservice/index.xml"
newsgate: "http://newsgate-host/newsgate-cf/"
bridge: "http://bridge-host:7001/ngece-bridge/"

where bridge-host is the IP address or host name of an Escenic-CCI Newsgate bridge. (A bridge
is a service capable of converting Escenic content to Newsgate format, and is required to support
Newsgate write-to-fit functionality in CUE.)

6. Save the file.

7.  Enter:
# dpkg-reconfigure cue-web-3.15

This reconfigures CUE with the Content Store web service URL you specified in step 3.

You now need to configure the nginx web server to serve the CUE application, as described in section
2.1.2.

2.1.2 Nginx Configuration

To configure nginx:

1. If necessary, switch user to root.
$ sudo su
2. Open /etc/nginx/sites-available/default for editing, and replace the entire contents
of the file with the following;:

server {
listen 81 default;
include /etc/nginx/default-site/*.conf;

}
3. Create a new folder to contain your site definitions:
# mkdir /etc/nginx/default-site/
4. Add three files to the new /ete/nginx/default-site/ folder, called cue-web. conf and
webservice.conf:

# touch /etc/nginx/default-site/cue-web.conf
# touch /etc/nginx/default-site/webservice.conf
# touch /etc/nginx/conf.d/request-entity-size-limit.conf

5. Open /etc/nginx/default-site/cue-web.conf for editing and add the following
contents:

location /cue-web/ {
alias /var/www/html/cue-web/;
expires modified +310s;

Copyright © 2015-2023 Stibo DX A/S Page 8



CUE Tech Guide

}

Depending on the version of nginx that you have installed, the alias specified in cue-
web . conf may need to be set to /var/www/cue-web/ instead of /var/www/html/cue-
web/.

6. Open /etc/nginx/default-site/webservice.conf for editing and add the contents
described in section 2.1.3.

7. Open /etc/nginx/conf.d/request-entity-size-limit.conf for editing and add the
following contents:

# Disable default 1Mb limit of PUT and POST requests.
client max body size 0;

(If you do not add this setting, then nginx will not allow larger files such as images and videos to
be uploaded to CUE.)

You will now need to set up cross-origin communication between CUE and the Content Store web
service as described in section 2.1.3.

2.1.3 Web Service CORS Configuration

Your cue-web application is now running on the nginx default port, 81. In order to be able to run
correctly it needs to be able to send requests to the CUE Content Store's web service. This web service
may possibly be running on a different host in a different domain. Even if it is running on the same
host as nginx, it will most likely be listening on port 8080 (Tomcat's default port). This means that by
default any requests from the cue-web application to the Content Store web service will be rejected as
cross-origin scripting exploits.

You can, however, enable cross-origin communication between the cue-web application and the
Content Store web service by setting up an nginx proxy for the web service that redirects requests to
the actual web service and also adds the CORS headers needed to ensure that the requests will not be
rejected.

Here is an example of a suitable /etc/nginx/default-site/webservice.conf:
location ~ "/ (escenic|studio|webservice|webservice-extensions)/ (.*)" {
if (Shttp origin ~* (https?://["/]*\.dev\.my-cue-domain\.com(:[0-9]+)7?)S) {

set S$cors "true";

if (Srequest method = 'OPTIONS') {
set S$cors "${cors}options";

if (Srequest method = 'GET') {
set S$cors "${cors}get";

if (Srequest method = 'HEAD') {
set S$Scors "${cors}get";

if (Srequest method = 'POST') {
set S$Scors "${cors}post";

if (Srequest method = 'PUT') {
set Scors "${cors}post";

if (Srequest method = 'DELETE') {
set $cors "${cors}post";

Copyright © 2015-2023 Stibo DX A/S Page 9


https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

CUE Tech Guide

}

if (Scors = "trueget") {
add header "Access-Control-Allow-Origin" "$http origin" always;
add _header "Access-Control-Allow-Credentials" "true" always;

add_header "Access-Control-Expose-Headers" "Link,X-ECE-Active-
Connections, Location,ETag,Allow" always;

}

if ($Scors = "truepost") {
add header "Access-Control-Allow-Origin" "Shttp origin" always;
add header "Access-Control-Allow-Credentials" "true" always;

add_header "Access-Control-Expose-Headers" "Link,X-ECE-Active-
Connections,Location,ETag" always;
}
if (Scors = "trueoptions") {
add header 'Access-Control-Allow-Origin' "$http origin";
add header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Access-Control-Allow-Methods' 'GET, POST, HEAD, OPTIONS, PUT,
DELETE';
add_header 'Access-Control-Allow-Headers' 'Authorization,Content-
Type, Accept,Origin,User-Agent, DNT, Cache-Control,X-Mx-ReqToken, Keep-Alive, X-Requested-
With, If-Modified-Since, If-Match, If-None-Match,X-Escenic-Locks,X-Escenic-media-
filename,X-Escenic-home-section-uri,X-Escenic-Container-Destinations’';
add_header 'Content-Length' 0;
add header 'Content-Type' 'text/plain charset=UTF-8';
return 204;

}
proxy set header Host $http host;
proxy pass http://127.0.0.1:8080;

In the origin filter at the top of the file:
if ($http origin ~* (https?://["/]*\.dev\.my-cue-domain\.com(:[0-9]1+)7?)$) {

set S$Scors "true";

you must replace my-cue-domain\ . com with the actual domain name of your CUE installation.

2.2 Optional Tasks

The configuration tasks described in this section are optional. Whether or not they are necessary
depends on your system requirements.

Most of the configuration tasks involve editing YAML configuration files in the CUE configuration
folder (/etc/escenic/cue-web). In some cases, however, it is also necessary to make server-side
configuration changes. This usually involves editing XML files called Content Store resources.

2.2.1 Third-Party Authentication

Both CUE Content Store and CCI Newsgate can be configured to allow third-party authentication
of users. This lets you log in to CUE using your Google or Facebook ID, for example, rather than by
entering a CUE-specific user name ad password.

In order to be able to make use of third-party authentication in CUE:

Copyright © 2015-2023 Stibo DX A/S Page 10



CUE Tech Guide

« The Content Store/CCI Newsgate back-end system(s) must have been configured to allow third-
party authentication. For details of how to enable third-party authentication in CUE, see Third-
Party Authentication.

« CUE itself must be configured to display the UI for the third-party authentication methods that
have been enabled.

CUE supports two third-party authenticators — Google and Facebook.

2211 Google Authentication

If the relevant back-end system(s) have been set up to support Google Authentication, then you can
configure CUE support by adding a YAML configuration file to the CUE configuration folder (/etc/
escenic/cue-web).

When you are configuring third-party authentication for the Content Store as described in Configure
OAuth Authentication, you need to add a CUE redirect URI to the

in step 16. The URI must be your CUE URI followed by /oauth_callback.html: for example
http://your-cue-host/cue-web/oauth_callback.html.

Your configuration file must contain the following settings:

oauth:
name: "Google"
label: "Log in with Google account"

authURI: "https://accounts.google.com/o/oauth2/auth
scope: "email"
clientId: "google-client-id"

where google-client-id is the client ID you created in the steps described above.

When setting up Google authentication for the Content Store, you create two client IDs — one for
desktop clients and one for web clients. Make sure that you use the web client ID for configuring
CUE.

When you have saved this file, enter (as the root user):

# dpkg-reconfigure cue-web-3.15

This reconfigures CUE with the changes you have made. The CUE login page will now include a
option.

2.2.1.2 Facebook Authentication

If the relevant back-end system(s) have been set up to support Facebook Authentication, then you can
configure CUE support by adding a YAML configuration file to the CUE configuration folder (/etc/
escenic/cue-web). The file must contain the following settings:

oauth:
name: "Facebook"
label: "Log in with Facebook account"

authURI: "https://graph.facebook.com/ocauth/authorize"
scope: "email"
clientId: "facebook-client-id"

Copyright © 2015-2023 Stibo DX A/S Page 11


http://docs.escenic.com/ece-server-admin-guide/7.15/third_party_authentication.html
http://docs.escenic.com/ece-server-admin-guide/7.15/third_party_authentication.html
http://docs.escenic.com/ece-server-admin-guide/7.15/create_credentials_content_studio.html
http://docs.escenic.com/ece-server-admin-guide/7.15/create_credentials_content_studio.html

CUE Tech Guide

where facebook-client-id is the the web client ID you created when configuring access to the back-
end system(s) (see Configure OAuth Authentication).

When setting up Facebook authentication for the Content Store, you create two client IDs — one for
desktop clients and one for web clients. Make sure that you use the web client ID for configuring
CUE.

When you have saved this file, enter (as the root user):

# dpkg-reconfigure cue-web-3.15

This reconfigures CUE with the changes you have made. The CUE login page will now include a
option.

2.2.2 Create new Dialog

Cs All lists Create new b 4
Christians 2nd list in Christian's Corner
‘Christians 3rd list in Christian’s Corner E m E EE
. Story Picture External Video  Story Folder
= Hanses Super list in Hanses Corner
An empty list in Hanses Corner
A list of authors in Hanses Corner
‘Older stories in Hanses Corner
Cancel
Luis List in Luis sections
The dialog (shown above) is configurable: you can specify which content types are to be

displayed as favorites in the top half of the dialog. There is space for a maximum of four favorites: all
other options must be selected using the search field in the bottom half of the dialog.

To specify your required favourites:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/30-new-content-defaults.yml for editing. For example

# nano /etc/escenic/cue-web/30-new-content-defaults.yml

3. Find the newContentDefaults parameter:

newContentDefaults:
- type: "story"
icon: "story"
- type: "picture"
icon: "picture"
- type: "video"
icon: "video"
- type: "storyfolder"
icon: "storyfolder"
- type: "gallery"
icon: "picture"

4. Modify the list of content type/icon pairs to meet your requirements. If you use CUE to edit
several publications that have different content types, then you may want to have more than
four content types in the list even though a maximum of four can be displayed in the dialog. If

Copyright © 2015-2023 Stibo DX A/S Page 12


http://docs.escenic.com/ece-server-admin-guide/7.15/create_credentials_content_studio.html

CUE Tech Guide

a publication has no video content type, for example, then the dialog will display
story, picture, storyfolder and gallery from the above list.

Note that if you create custom content type icons as described in section 2.2.6, then any icon
settings made in the content-type resource will override icon settings made here.

5.  Save the file.
6. Enter:
# dpkg-reconfigure cue-web-3.15

This reconfigures CUE with the changes you have made.

2.2.3 Heading Levels

The rich text editor's formatting tool bar has a Heading button that you can use to insert HTML
heading elements h1, h2 h3 and so on. By default the button offers h2 as the default selection, with
headings h1 and h3 - h6 as options in a drop-down menu:

H:» B I U [ B ¥ x E = = A

. eworks, food and prayers: new year ce

You can, however, change this default configuration as follows:

1. If necessary, switch user to root.

$ sudo su

2. Open etc/escenic/cue-web-3.15/plugins/internal/EscenicHeading/
EscenicHeading. yml for editing. For example:

# nano etc/escenic/cue-web-3.15/plugins/internal/EscenicHeading/EscenicHeading.yml

3. To change the default heading level, edit the defaultHeadingLevel property:
defaultHeadingLevel: 2

4. To change the contents of the drop-down menu, edit the headingLevels property:
headingLevels: "1, 2, 3, 4, 5, 6"

5.  Save the file.
6. Enter:

# dpkg-reconfigure cue-web-3.15

This reconfigures CUE with the changes you have made.

2.2.4 Automatic div Removal

CUE can be configured to automatically remove HTML div elements from text pasted into rich text
fields. This functionality is useful for some customers, but not for others and is therefore disabled by
default. To enable it:

Copyright © 2015-2023 Stibo DX A/S Page 13



CUE Tech Guide

1. If necessary, switch user to root.

$ sudo su
2. Open /etc/escenic/cue-web/config.yml for editing. For example
# nano /etc/escenic/cue-web/config.yml
3. Add the following setting:
removeDivsAutomatically: true
Save the file.

Enter:

# dpkg-reconfigure cue-web-3.15
This reconfigures CUE with the changes you have made.

You can disable the functionality by setting removeDivsAutomatically to false.

2.2.5 Content Type Selection for Binaries

When a binary file is dropped in CUE, a content item is automatically created to contain it. In order to
be able to do this, CUE searches for a content type that is configured to handle the binary file's MIME
type. If some MIME types can be handled by more than one content type, then by default CUE uses the
first one it finds. You can, however configure CUE to allow the user to choose the content-type.

To configure this kind of content type selection:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example

# nano /etc/escenic/cue-web/config.yml

3. Add the following settings:

contentTypeSelection:
enabled: true

Save the file.
5. Enter:

# dpkg-reconfigure cue-web-3.15
This reconfigures CUE with the changes you have made.

If JPEG file types can be handled by three different content types, picture, graphic and special,
then users who drop a JPEG file into CUE will now be prompted to select which of the three content
types CUE should use.

If you don't want all available content types to be offered as options, you can exclude some by
including an ignoreContentTypes property in the configuration file:

contentTypeSelection:

enabled: true
ignoreContentTypes: ["special"]

Copyright © 2015-2023 Stibo DX A/S Page 14



CUE Tech Guide

ignoreContentTypes accepts an array of content type names, so you can exclude multiple content
types from the user prompt if you wish. If you exclude all content types except one, then no prompt is
displayed in CUE since the user no longer has a choice.

2.2.6 Defining Custom Icons

Icons are widely used to represent different types of objects in CUE:

« Content items

« Publications

« Story elements in storylines
»  Workflow states

« Dashboards

 Macros

The icon used to represent a content item varies according to its type: stories are represented by
document icons, pictures by image icons, and so on. Similarly, paragraph, image and table story
elements are all represented by different icons, as are different publications, workflow states,
dashboards and macros. A number of standard icons are supplied with CUE for use with default
publications, content types, story element types, states and so on. It is of course possible to re-
use some of these icons for your own content types, story element types and so on, but it is not
recommended — you should define your own custom icons.

All of the above object types are defined in Content Store resource files of one kind or another as part
of the publication definition process described in the Content Store Publication Design Guide.

In general, defining an icon for one of the above object types involves creating the icon itself (an
image file, for example) and then adding a ui : icon element that references the image to the object
type's definition in the appropriate Content Store resource file. Suppose, for example, that you want
to add an icon to your "Long Story" content type. In this case you would need to insert a ui: icon
element as a child of the <content-type name="longstory"> element in your publication's
content-type resource. Similarly, for a "Special Para" story element type, you would need to insert
aui:icon element as a child of the <story-element-type name="specialpara"> element in
your specialpara.xml story element type resource.

The details of what kind of image you should create and how you should use the ui : icon element
vary between the above object types. In some cases only .PNG images may be used as icons, whereas in
other cases more freedom is allowed (.SVG files, inline SVG code, Unicode characters and so on). For
detailed instructions, see the Content Store Publication Design Guide and the reference description of
the ui:icon element.

2.2.7 Metadata Panel Sections

You can control which sections appear in the metadata panel on the right side of the CUE window
(and the order in which they appear) by adding metadata-panel elements to your content type
definitions in the Content Store content-store resource. For general information about the
content-store resource and how to define CUE content types, see The content-type Resource.

Using the metadata-panel element, you can define what sections are to be displayed in
the metadata panel for each content type in a publication, and the order in which they are to
appear. The metadata-panel element belongs to a special CUE-specific namespace: http://

Copyright © 2015-2023 Stibo DX A/S Page 15


http://docs.escenic.com/ece-pub-design-guide/7.15/
http://docs.escenic.com/ece-pub-design-guide/7.15/
http://docs.escenic.com/ece-resource-ref/7.15/interface_hints.html
http://docs.escenic.com/ece-pub-design-guide/7.15/the_content_type_resource.html

CUE Tech Guide

xmlns.cuepublishing.com/configuration. Before you add any metadata-panel elements to
your content-type resource, therefore, you should declare this namespace in the file's root element,
and define a prefix for it (cue is recommended). For example:

<content-types xmlns="http://xmlns.escenic.com/2008/content-type"
xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
xmlns:doc="http://xmlns.vizrt.com/2010/documentation"
xmlns:media="http://xmlns.escenic.com/2013/media"
xmlns:video="http://xmlns.escenic.com/2010/video"
xmlns:livecenter="http://xmlns.escenic.com/2015/1live-center"
xmlns:cci="http://cci/extension/integration"
xmlns:cue="http://xmlns.cuepublishing.com/configuration"
version="4">

</content-types>

Once you have done this, you can control the metadata panel sections displayed for items of a
particular content type by adding a cue :metadata-panel element as a child of its defining
content-type element. For example:

<content-type name="story">

<cue:metadata-panel>
my.relation-headshot
cue.general-info
my.extra-info
cue.section

</cue:metadata-panel>

</content-type>

The content of the metadata-panel element must be a white space-separated list of metadata panel
section names. Only the sections you specify in the list will be displayed for content items of this

type, and they will be displayed in the order specified. Content types for which you do not specify a
cue :metadata-panel element will get the default metadata panel sections, displayed in the default
order.

The built-in sections must be specified using their CUE tag names, all of which start with the
prefix "cue.". Most of the built in sections are omitted from the above example to keep it short.
For a complete list of all the built-in metadata sections and their tag names, see section 2.2.7.1. The
tag names of any metadata sections belonging to custom web components are defined in the web
component configurations, as described in section 4.1.2.7.1, for example.

22.7.1 Metadata Section Tag Names

CUE metadata panel sections are identified by tag names. All the built-in sections have tag names
that start with the characters "cue.". To avoid possible future name clashes, you should choose a
different prefix when naming any custom metadata sections you create.

CUE online sections

UI Label Tag name

Schedule cue.schedule

Copyright © 2015-2023 Stibo DX A/S Page 16



CUE Tech Guide

UI Label Tag name

Authors cue.authors

General info cue.general-info

Related cue.related

Section cue.section

Tags cue. tags

Usages cue.usage

Measurements cue.online-measurements
Metrics cue.online-metrics
Semantic analysis (if CUE Semantic is installed) |cue.semantic

CUE Print sections

UI Label Tag name

Properties cue.story-folder

General info cue.text-general-info
Package Properties cue. text-package-properties

Package Properties (for storylines) cue.print-storyline-package-
properties

Proofreading cue. text-proof-state

Related cue. text-related

Related (for storylines) cue.print-storyline-related

Text Properties cue. text-text-properties
Assignment cue.assignment

Assignment metadata cue.assignment-usage
Measurements cue.print-measurements

Shared sections

UI Label

Tag name

Versions

cue

.versions

Copyright © 2015-2023 Stibo DX A/S

Page 17




CUE Tech Guide

2.2.8 CUE Composer Integration for Storylines

It is possible to open a print story in CUE Composer directly from CUE. No configuration is required
to make this integration available for rich text-based stories but for storyline stories, you need to
explicitly enable it by including a cue: integration-target element in the storyline's content type
definition. This element must contain the value cue-print.

The cue: namespace prefix must be declared (usually in the content-type resource's root element as
follows:

<content-types xmlns="http://xmlns.escenic.com/2008/content-type"
xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
xmlns:doc="http://xmlns.vizrt.com/2010/documentation"
xmlns:media="http://xmlns.escenic.com/2013/media"
xmlns:video="http://xmlns.escenic.com/2010/video"
xmlns:livecenter="http://xmlns.escenic.com/2015/1live-center"
xmlns:cci="http://cci/extension/integration”
xmlns:cue="http://xmlns.cuepublishing.com/configuration"
version="4">

</content-types>

The cue: integration-target element must then be included in the content type definitions of all
the storyline content types that you want to be able to open in CUE Composer. For example:

<content-type name="storyline">
<cue:integration-target>cue-print</cue:integration-target>
</content-type>

If your installation includes multiple CUE Print instances (test, staging, production for example),
they must all be configured with different system names. Otherwise this feature may open stories in
the wrong instance of CUE Composer.

For storylines that are configured in this way, the following additional CUE Print-related features are
available:

« CUE Print-driven locking of storylines and story elements

« CUE Print measurement data, including "write to fit" line counts

These features are described in the following sections. Both features require the addition of cue: cue-
print elements to the story element types used in your storylines. A cue: cue-print element
establishes a mapping between the story element type to which it belongs and the story element type's
target CUE Print element tag:

<story-element-type
xmlns="http://xmlns.escenic.com/2008/content-type"
xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
xmlns:cue="http://xmlns.cuepublishing.com/configuration"
name="headline">

<cue:cue-print elementTag="Headline">

</story-element-type>

Copyright © 2015-2023 Stibo DX A/S Page 18



CUE Tech Guide

The above example indicates that the headline story element type is represented by the Headline
element tag in CUE Print. Note that the cue : namespace prefix needs to be declared in the root
element of any story element definition to which you add a cue : cue-print element (as highlighted
in the example above).

2281 CUE Print-driven Locking

Once the CUE Print package that inherits a print storyline is released, its content is locked and no
changes can be made to it. This change of status is made visible by locking the print storyline in CUE as
well. It is no longer possible to edit the storyline, and it is stamped with a message indicating its locked
status:

+ Network Language Upload Dev Tools cuUCc
— ¢
Tomorrow (¢
Storyline
GENERAL INFO
Home Publication: omorrow Today
B State + Ready
Type: Print Story
ID: 142
Gl Container Slug City Chiefs
Sol N
(13
2
o Haad dech ] MEASUREMENTS
™
Patrick Mahomes produced a staggering fourth-quarter performance to guide Kansas City Chiefs to head 3 of 2 line
their first Super Bowl win in 50 years as they came from 10 points behind to stun the San Francisco % byline 10f 1lines
49ers 31-20 in Miami. Lody Blotell
Kansas City Chiefs p
one sensational com
o Body Ty Jorgen Rasmussen

Should the package be "unreleased" in CUE Print, then it is also unlocked in CUE, and its stamp is
removed.

Copyright © 2015-2023 Stibo DX A/S Page 19

Quarterbuck Muhomes,
24, had endured a diffiult
evening under the
ing pressure of the 40crs
and looked set to miss out
on the big prize

Bur then, with
20-10 down he:

d-

side
it




CUE Tech Guide

In addition, the story elements that make up a print storyline can be individually locked and stamped if

the elements they are mapped to are branched in CUE Print:

+ Network Language Upload Dev Tools cuc

7}
+

Storyline

ol AR S e e ey s

Patrick Mahomes produced a staggering fourth-quarter performance to guide Kansas City Chiefs to
their first Super Bowl win in 50 years as they came from 10 points behind to stun the San Francisco
49ers 31-20 in Miami.

Quarterback Mahomes, 24, had endured a difficult evening under the pounding pressure of the 4Sers and locked set to
miss out on the big prize.

But then, with his side 20-10 down heading into the fourth quarter, ast year's MVP found two superb throws on third

it bm cmmtiniia m cmneam af cameabaclie ae tha Chinfe comend A1 manes cmrm o e int n e miacban amd P an oo e b

Tomorrow (¢

MEASUREMENTS
T
head
 byline

Should the changes made to an element in CUE Print be reverted, then the related story element is

unlocked in CUE and its stamp is removed.

% body

Kansas City Ch
one sensationa

By Jorgen Rasmussen

evening under the pound-
ing pressure of the 49crs
and looked set to miss out
on the big prize
But then, with his side
20-10 down heading
the fourth quarter, |
year's MVP found tv
perb throws on thi
to continue a scason ol

comebacks as the Chiefs
scored 21 unanswered
points in four minutes and
57 seconds to take home

the Vince Lombardi ‘Tro-
phy.

Note that story elements can only be locked in this way if they have been correctly configured with a

cue:cue-print element.

2.28.2 Displaying CUE Print Measurement Data

You can configure the story elements in a CUE Print-integrated storyline to display "as you type"

measurement data consisting of character, word and "write to fit" line counts:

Kansas City Chiefs Wins

The line count changes color according to its write-to-fit status:

« Black if the current line count is less than the requested line count
« Green if the current line count matches the requested line count

« Red if the current line count exceeds the requested line count

Copyright © 2015-2023 Stibo DX A/S

Page 20

2 of 2line
10f 1lines

18 of 26 li

iefs p
L com



CUE Tech Guide

To enable this functionality for a story element, you must add a ui : count element story element's
type definition (in addition to the cue: cueprint element that specifies its target CUE Print element
tag:

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type
xmlns="http://xmlns.escenic.com/2008/content-type"
xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
xmlns:cue="http://xmlns.cuepublishing.com/configuration"
name="headline">
<ui:label>Headline</ui:label>
<ui:icon>headline</ui:icon>
<ui:priority>900</ui:priority>
<ui:count show="true"/>
<cue:cue-print elementTag="Headline">
<field name="headline" type="basic" mime-type="text/plain">
<ui:title-field/>
</field>
<ui:style>
.story-element-headline [contenteditable="'true'] {
font-size: 2.5em;

}
</ui:style>
</story-element-type>

Note that:

e Theui:count element's for attribute (used when enabling word/character counts for online
storylines, see section 2.2.29.1) is not used in this context.

+ The ui:count element can only be used in this way with story elements. Although the ui : count
element can added to individual fields of a story element when enabling word/character counts
for online storylines (see section 2.2.29.1), this is not the case when enabling CUE Print-based
measurements.

2.2.9 Smart Quotes

CUE has a "smart quotes" function that can automatically convert default "straight" single or double
quotes to "curly" quotes of various kinds. Different languages (and different publishers) have different
quotation mark conventions, so this function is configurable, allowing you to set up CUE to use the
quotation marks you require.

Smart quoting is disabled by default. To enable it:

1. If necessary, switch user to root.

$ sudo su
2. Open /etc/escenic/cue-web/config.yml for editing. For example:
# nano /etc/escenic/cue-web/config.yml

3. Add auseSmartQuotes property, and set it to true:

useSmartQuotes: true

This enables the smart quotes function.

4. Add a smartQuotes property with four child properties called openDoubleCurly,
closeDoubleCurly, openSingleCurly and closeSingleCurly. Use these properties to

Copyright © 2015-2023 Stibo DX A/S Page 21



CUE Tech Guide

specify the quotation marks you want to use. Straight double quotation marks are replaced by
the characters you specify with openDoubleCurly and closeDoubleCurly, and straight
single quotation marks are replaced by the characters you specify with openSingleCurly and
closeSingleCurly. The following settings, for example:

useSmartQuotes: true

smartQuotes:
openDoubleCurly: ","
closeDoubleCurly: "”"
openSingleCurly: "'"
closeSingleCurly: "’'"

will replace "quotation" with ,quotation” and 'quotation’ with ‘quotation’.

5. If you want to limit the smart quotes functionality to rich text fields only, add the following:

disableSmartQuotesInNonRichTextFields: true

The smart quotes functionality will then not work in plain text fields.
6. Save the file.

7.  Enter:
# dpkg-reconfigure cue-web-3.15

This reconfigures CUE with the changes you have made.

2.2.10 Spelling Checker

CUE itself does not include a spelling checker, and depends on whatever spelling checker is provided
by the browser it is running in. Chrome includes a built-in spelling checker, and there are also spelling
checker plug-ins for Chrome. CUE Print, however does include a spelling checker, and CUE can be
configured to use CUE Print's spelling checker instead of whatever is available in the browser.

By default, CUE does not make use of the CUE Print spelling checker, even if it is available. To enable
it:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example:

# nano /etc/escenic/cue-web/config.yml

3.  Add the following settings:

cueSpellCheck:
enabled: true
defaultState: on

This both enables the CUE Print spelling checker and switches it on by default for all users. If you
don't want it to be on by default for all users, then set defaultState to of£ instead.

Save the file.

Enter:

# dpkg-reconfigure cue-web-3.15

This reconfigures CUE with the changes you have made.

Copyright © 2015-2023 Stibo DX A/S Page 22



CUE Tech Guide

Whether you set the spelling checker on or off by default, CUE users can subsequently switch it on
or off for themselves. The option can be found under on the page.
Their selected setting is saved on the device, so users who use multiple devices will need to make the
setting separately on each device.

2.2.11 Semantic Shortcut Key Combination

CUE has a semantic shortcut feature that provides keyboard-only access to CUE features. By
default, a semantic shortcut is introduced by pressing the Shift key twice in quick succession: this
displays a small dialog listing additional keys the user can press to complete a shortcut and execute
an action. You can, however, replace the Shift Shift introductory key sequence with some other
key sequence or key combination if required. You can also change the maximum interval between the
keypresses in an introductory key sequence.

To change the default semantic shortcut settings:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example:

# nano /etc/escenic/cue-web/config.yml

3. Toreplace the default Shift Shift sequence add the following setting:

keyboardShortcuts:
semanticToggle: "new-sequence"

where new-sequence is a key sequence specification such as mod mod (which specifies a key
sequence) or mod+alt+a (which specifies a key combination).

4. Ifyou are using a key sequence (either the default shift shift or a sequence you have defined
yourself), you can also control how quickly the user has to type the sequence in order for it
to be recognized. By default, the interval between the two keypresses must not exceed 500
milliseconds. To increase the interval to 600 milliseconds, for example, you would need to enter a
resetSequenceTimeout property as a child of the same keyboardShortcuts property:
keyboardShortcuts:

resetSequenceTimeout: 600

5. Save the file.

6. Enter:
# dpkg-reconfigure cue-web-3.15

This reconfigures CUE with the change you made.

Note that:

+ The key identifier mod represents the ctrl key on Windows or the command key on Mac. You
should always use mod rather than ctrl or command to ensure that semantic shortcuts will
work on both platforms.

» You can in theory use any sequence or combination of keys to introduce semantic shortcuts, but
in order to avoid problems you are recommended to stick to either a modifier sequence such as
shift shift or a combination of modifiers and characters such as mod+alt+a. You should also
take care to avoid combinations that are already in use either by CUE itself or by the browser.

Copyright © 2015-2023 Stibo DX A/S Page 23



CUE Tech Guide

For more detailed information about supported key combinations and how to specify them, see the
documentation of the Javascript library used to provide this functionality: Mousetrap.

2.2.12 Content Creation Shortcuts

You can make custom shortcuts for creating new content items of specific types by adding a
quickCreateShortcuts entry to one of the configuration files in /etc/escenic/cue-web/. The
quickCreateShortcuts must contain an array of definitions, each one defining the shortcut(s) for
creating a different type of content item. For example:

quickCreateShortcuts:
- name: "Regular Story"
keystroke: "r"
quickCombo: ["ctrl+alt+r"]
contentType: "regular-news-story"

- name: "Developing Story"
keystroke: "d"
quickCombo: ['ctrl+alt+d']
contentType: "developing-story"

- name: "Classic Story"
keystroke: "c"
quickCombo: ['ctrl+alt+c']

contentType: "story"

- name: "Picture"
keystroke: "p"
quickCombo: ['ctrl+alt+p']
contentType: "picture"

The primary purpose of this configuration is to create custom semantic shortcuts for content
creation. Once you have created at least one such shortcut, then the existing Shift Shift C

(Create) semantic shortcut will, instead of immediately displaying the dialog, display
the semantic shortcuts you have created, plus an option that displays the
dialog:

C Create..

Selecting any of the custom shortcuts creates the new content item immediately.
You can, however, (as in the example shown above) create additional key combination shortcuts.
Each shortcut definition consists of the following properties:

name (required)
The label to use in the semantic shortcut dialog.

Copyright © 2015-2023 Stibo DX A/S Page 24


https://craig.is/killing/mice

CUE Tech Guide

keystroke (required)
The semantic shortcut keystroke to follow Shift Shift C.You can use any key except N. Omit
this property if you only want to create a standard key combination shortcut.

quickCombo (optional)
An alternative key combination shortcut. Make sure you avoid the combinations already used by
CUE and the browser. Omit this property if you only want to create a semantic shortcut.

contentType (required)
The name of the content type to create.

2.2.13 The Publish Shortcut

By default, the buttons in CUE are assigned the shortcut ctrl+shift+s / command+shift
+s. You can, however, replace this default with another shortcut or remove it entirely by adding a
publishButtonShortcut entry to one of the configuration files in /etc/escenic/cue-web/.
Removing the shortcut from these buttons reduces the risk of users unintentionally publishing content
while editing.

To remove the default shortcut from the buttons, set the value of
publishButtonShortcut to an empty array:

publishButtonShortcut: []

To replace the default shortcut with your own shortcut, fill the array with the key combinations you
want to use:

publishButtonShortcut: ['mod+alt+p']

mod is shorthand for both the ectrl key on Windows and the command key on Macs, so the above is
equivalent to:

publishButtonShortcut: ['ctrl+alt+p', 'command+alt+p']

Be careful not to choose a key combination that is already in use — either by CUE, the browser or the
operating system.

2.2.14 Content Card Date Type

The content cards displayed in lists such as search results lists include a date field that can be used as
a sorting key. By default, the date shown in this field is the content item's creation date (or in fact its
creation time). You can optionally replace the creation date/time with the last-modified date/time if
you consider this to be a more useful sort key.

To replace creation date/time with last-modified date/time:
1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example:

# nano /etc/escenic/cue-web/config.yml

3. Add the following setting:

useModificationTimeOnContentCard = true

4. Save the file.

Copyright © 2015-2023 Stibo DX A/S Page 25



CUE Tech Guide

5. Enter:

# dpkg-reconfigure cue-web-3.15

This reconfigures CUE with the change you made.

2.2.15 Storyline Symbol Insertion

CUE's storyline editor includes a tool for easily inserting symbols and special characters in the
storyline text: non-Latin characters, mathematical symbols, currency symbols, emojis and invisible
characters such as soft hyphens and non-breaking spaces. The purpose of the symbol insertion tool
is not to enable the insertion of any character (computer operating systems in any case provides
methods for doing that) but to make the insertion of commonly-used special characters easy. Before
you can used the symbol insertion tool, therefore, you need to configure it with a selection of the
characters and symbols likely to be actually required at your installation.

Once it is configured, the symbol insertion tool provides the following capabilities:

« Keyboard shortcuts for inserting characters and symbols
e A dialog from which characters and symbols can be selected

+ A function for revealing the location of invisible characters such as soft hyphens

The symbol insertion functionality is only available in text-only story elements such as headline,
lead-text, paragraph, pull-quote and so on. It will not work in story elements that contain
non-text fields: none of the symbol insertion features will work in in the caption field of an image
story element, for example.

The dialog is displayed by means of a semantic shortcut (Shift Shift Y) and looks like
this:
Symbols X

O Show invisible symbols in text

Favorites

- Smiley

Rs Rupeesign

+& Football

°F Degree Fahrenheit

S Dollar sign

Al

« 2 ) “ " @ ° ®

Mo oNe §°C F S € ¥ ¢

£ P R @ & @ F

Cancel

All the special characters configured for use at your site are displayed at the bottom of the dialog under
. In addition, each user's 5 most frequently used characters are displayed at the top of the dialog

under . Any displayed character can be inserted by clicking on it, and hovering the mouse
over a character will display its name (useful for invisible characters such as soft hyphens). There is
also a field at the top of the dialog that you can use to search for symbols by name.

Copyright © 2015-2023 Stibo DX A/S Page 26



CUE Tech Guide

Checking the option highlights any invisible characters in the
storyline in blue, rendering them visible. If you check or uncheck this option, then an button
is displayed in the dialog so that you can close the dialog and apply the change. In this way you can
switch highlighting of invisible characters on and off.

Depending on how the symbol insertion tool is configured, it may also be possible to enter some
characters just by pressing a keyboard shortcut, without displaying the dialog (see the
description of the shortcut property below).

To enable the symbol insertion functionality, you need to add a specialChars property like this to
one of your CUE configuration files:

specialChars:
- name: 'Soft Hyphen'
icon: '-!

invisible: true

- name: 'Left double-angle quote'
icon: '«'
shortcut: ["ctrl+alt+,", "command+alt+,"]

- name: 'Right double-angle quote'

icon: '»'

shortcut: ["ctrl+alt+.", "command+alt+."]
- name: 'Copyright'
icon: '©'

The specialChars property must contain an array of entries defining the characters you want users
to be able to insert. Each entry consists of the following properties:

name

The character/symbol name as you want it to appear in the dialog. (Required)
icon

The actual character or symbol to be inserted. (Required)

Note that in the example shown above, the icon appears to be an empty string, but is in fact
a soft hyphen character (U+00AD).

shortcut
An array of one or more shortcut definitions that can be used to insert the character. Make sure
to avoid shortcuts that are already used by the operating system or the browser. (Optional)

invisible
Set this to true for invisible characters that you want to be able to highlight using the
function. (Optional)

2.2.16 Section Page Metadata Panel Width

You can increase the width of the metadata panel in the section editor has been increased. Some users
may prefer this layout, since much of the section page editor's functionality is located in the metadata
panel.

To enable an extra-wide section page metadata panel:

1. If necessary, switch user to root.

$ sudo su

Copyright © 2015-2023 Stibo DX A/S Page 27



CUE Tech Guide

2. Open /etc/escenic/cue-web/config.yml for editing. For example:
# nano /etc/escenic/cue-web/config.yml
3. Add the following setting;:
wideSectionMetadataPanel = true
Save the file.

5. Enter:
# dpkg-reconfigure cue-web-3.15

This reconfigures CUE with the change you made.

2.2.17 Search Filters

The CUE search panel offers a set of search filters that allow users to narrow down the results of a
search by limiting the results to all documents of a specified type or all documents created after a
certain date, and so on. It is difficult to design a set of filters that meets all customers' requirements, so
the CUE search filters are configurable. By editing a Content Store configuration file, you can:

« Determine which filters appear in the search panel's filters list
« Determine the order in which the filters appear

« Add your own custom filters

Exactly how you modify the search filters offered in the CUE search panel depends on whether your
CUE installation has a CUE Content Store back end, or an Escenic Content Engine back end:

« Ifyou have a CUE Content Store back end, then it is a Content Store configuration task. No
configuration work is required in CUE itself. For instructions on how to modify CUE's search filters,
see Custom Search Filter Definitions.

« Ifyou have an Escenic Content Engine back end, then see section 2.2.17.1 below.

22171 Modifying the Search Filter Panel (Escenic Back End)

Custom filters are simpler than the predefined filters: they are simple tests that the CUE user can only
turn on or off. You could, for example, create a "Premium content" filter that selects only content items
with a Boolean premium field that is set to true.

To modify the search filter panel:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/40-search-filter.yml for editing. For example:

# nano /etc/escenic/cue-web/40-search-filter.yml

3. Modify the default search filter layout to meet your requirements:

searchFilter:
- id: "document-types"
name: "Document Types" #translate
- id: "document-states"
name: "Document States" #translate
- id: "creation-date"
name: "Creation date" #translate

Copyright © 2015-2023 Stibo DX A/S Page 28


http://docs.escenic.com/ece-pub-design-guide/7.15/custom_search_filter_definitions.html

CUE Tech Guide

- id: "authors"

name: "Authors" #translate

- id: "sections"

name: "Sections" #trans
- id: "tags"
name: "Tags" #translate

late

You can, for example, change the order of the predefined filters and remove any you don't need by

commenting them out:

searchFilter:
- id: "document-types"
name: "Document Types"
- id: "document-states"
name: "Document States"
- id: "creation-date"
name: "Creation date" #
- id: "sections"
name: "Sections" #trans
- id: "authors"
name: "Authors" #transl
# - id: "tags"

#translate

#translate

translate

late

ate

# name: "Tags" j#translate

You can also add custom filters of your own. You can insert a custom filter anywhere you like, for

example:

searchFilter:

- id: "document-types"
name: "Document Types"

- id: "document-states"
name: "Document States"

- id: "creation-date"
name: "Creation date" #

- id: "premium-content"

name: "Premium Content" #translate

query: "premium b:true"
- id: "sections"

name: "Sections" #trans
- id: "authors"

#translate

#translate

translate

late

name: "Authors" #translate
# - id: "tags"
# name: "Tags" #translate

4. Save the file.
5. Enter:

# dpkg-reconfigure cue-web-

This reconfigures CUE with the changes you have made.

Note the following:

3.15

» A custom filter's query property of must contain a valid Solr query clause. This means that in order
to write such a clause you need to know both Solr query syntax and your Solr schema (in order to

know what fields are indexed and how to identify the fields correctly).

« The predefined search filters have fixed IDs. Make sure that your custom filter IDs do not clash

with them.

Copyright © 2015-2023 Stibo DX A/S

Page 29


http://www.solrtutorial.com/solr-query-syntax.html

CUE Tech Guide

2.2.18 Dashboards (Content Store only)

The functionality described in this topic depends on use of the CUE Content Store. If you are using
CUE with an Escenic Content Engine back end, then it is not available.

A dashboard is a panel that contains one or more constantly updated lists of content items
maintained by CUE. Dashboards provide an easy way for editors and others to maintain control

over the editorial workflow. A dashboard might, for example, contain two lists: one showing all draft
content items in the Sports section and the other showing all approved content items in the same
section. Another dashboard might contain a single list showing all image content items that are in the
approved state. You can define any number of dashboards.

The content of a dashboard is updated every 30 seconds by default.

All the dashboards available to you can be displayed by selecting € from the left hand navigation
menu:

Dashboards

®¢ AP Wires

B8 O v

B AP wires

@ Check Workspace

@ Newsroom Status

&

T Published per publication

® Ready to Publish

i o

B some Editors Workspace

Double-click on one of the listed dashboards to display it in a new tab.

The content item lists displayed in a dashboard are the results of predefined searches. The appearance
and functionality of a dashboard depends upon whether it contains just one search result list, or
several.

A single-search dashboard looks more or less identical to the CUE search panel:

|
Brad Pitt Wears Nametag At Oscars Luncheon And Twitter Howls It
ENTERTAINMENT

[
Brad Pitt Wears Nametag At Oscars Luncheon And Twitter Howls It
ENTERTAINMENT

cidunt, sit amet ullamcorper mauris placerat. Maecenas ut odio finibus, pharetra

Like an ordinary search panel it has a search field at the top and a filter drop-down on the right that
you can use to narrow down the contents of the list. And as with the standard search panel, you can
also save searches. A saved search created in a dashboard belongs to the dashboard: you will not find it
in the standard search panel or in any other dashboard.

Copyright © 2015-2023 Stibo DX A/S Page 30



CUE Tech Guide

A multiple search dashboard has a simpler layout, and the searches it provides cannot be modified:

Newsroom Status

Started In Progress Published
it
Event testing... Hans is testing character counts Brad Pitt Wears Nametag At O... It
Vestibulum tempus urna at ipsum ENTERTAINMENT
tincidunt, sit amet ullamcorper mauris

5 Jorgen Rasmussen i New Articesor tomorrov-cnine Tody st 113 PM By Hansemann S o Tomrrow, Todayat1214pM 5 Jesper A From Tomortow Todayat 1108 AM

I °
Brad pitt Wears Nametag At “1F% || b Feminism stand out at Paris Fa... 1= MWV
ENTERTAINMENT I adored Maria Grazia Chiuris first R
collection fo Dior. It 5o nspiring to fnaly g ¢
5 Sesper A From Tomorrow Taday at106PM By e The Edtor rom Tomorrow = Today at 2160 | SR

[
Brad Pitt Wears Nametag At... It Brad Pitt Wears Nametag At O...

Event test 45

5 Jorgen Rasmussen i New Ariceson tomorrove-onine Today 3t 146 AM

The five pillars of climate chan...
ENTERTAINMENT ENTERTAINMENT The fossil fuel industry, political lobbyists,
media moguls and individuals have spent

5 Jsper & From Tomorrow Todayat 106 M By esper AFrom Tomorrow ) Todayat 1038 AW 5 e The it 70 Tomo, Today atnisaAM (8

aefjj Hello draft story

Hello draft story

S — tine Adrministator .. Today at 712 AM

- mountains-alpine-reservoir-.. storyline by admin

iﬂ»ig 6y Gt nNew A .. Today 223 S— e Aistor... > Toay 3708 Ak

bush-rosebush-roses-4781627

6 Chvisian G n New Arices on ... Today ¢ 1223 M

R‘M sicly-siracusa-architecture-...

There is no search field or filter panel: just lists of search results.

Creating dashboards is a Content Store configuration task. No configuration work is required in CUE
itself. For instructions on how to create dashboards, see Dashboard Definitions.

2.2.19 Asset Picker Custom Search Filters (Content Store only)

The asset picker dialogs displayed by CUE for selecting content items in various contexts (for example
selecting an image, video or relation to include in a story) have a search filter button. Clicking this
button displays a search filter form that lets the user narrow down the list of selectable content items
in various ways.

CUE is delivered with a standard search filter that is used in all search panels, dashboards and asset
pickers by default. It is, however, possible to modify this standard search filter and to define your own
search filters. If CUE has a Content Store back end then you can replace asset picker search filters with
these custom search filters. This feature is not, however, available with Escenic Content Engine back
ends.

You can configure an asset picker to use a custom search filter in two different ways:

« For a standard content item relation, you do it by inserting a ui : search-filter-name
element as a child of the appropriate relation-type element in a content type definition (see
Customizing Relation Asset Picker Filters).

« For story elements that represent relations such as "image", "video", "gallery" and "relation" story
elements, you do it by inserting a ui : search-filter-name element as a child of the 1ink
type £ield element in the relevant story-element-type definition (see Image Element Type
Filters).

In both cases the ui: search-filter-name element must contain the name of the search filter that
you want to use:

<ui:search-filter—-name>my-custom-search-filter</ui:search-filter-name>

Copyright © 2015-2023 Stibo DX A/S Page 31


http://docs.escenic.com/ece-pub-design-guide/7.15/dashboard_definitions.html
http://docs.cuepublishing.com/ece-pub-design-guide/7.15/customizing_relation_asset_picker_filters.html
http://docs.cuepublishing.com/ece-pub-design-guide/7.15/image_element_type.html
http://docs.cuepublishing.com/ece-pub-design-guide/7.15/image_element_type.html

CUE Tech Guide

2.2.20 Autosave Interval

By default, changes made in a content editor are autosaved every three seconds. If you wish to change
the autosave interval, you can do so by adding a configuration setting as follows:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example

# nano /etc/escenic/cue-web/config.yml

3. Add the following setting:

autoSavelnterval: interval

where interval is the required update interval in milliseconds (the default setting is 3000).
Save the file.

Enter:

# dpkg-reconfigure cue-web-3.15

This reconfigures CUE with the changes you have made.

2.2.21 Quick View

CUE has a quick view feature that lets you quickly display a content item without having to actually
open it in an editor. To display a quick view you select the content item you are interested in (for
example, in a search results list) and press the space bar. This displays a pop-up window containing

a simplified view of the content item. The quick view is superficially similar to a content editor but
usually contains only a subset of the content item's fields, and it is not editable. You can navigate up
and down in the content item list with the quick view open, and the contents of the view will change to
show the currently selected item. To close the quick view, press the space bar a second time.

The quick view feature is available in:

« Search results lists

« Dashboard lists

« The list

« The metadata panel and sections
« The section page editor

o Inbox and list editors

In order to be useful, the quick view function must be configured by adding ui : preview elements to
the fields in your content type and story element type definitions. Unless you do this, the main part of
the quick view window will always be empty (although the metadata panel on the right of the window
will contain some basic metadata).

To make a field show up in quick views, you need to add a ui : preview element as a child of it's
field type definition. For a storyline-based content item, this will be a £ield element in a story
element type definition (see Story Element Types). For a rich text-based content item, it will be a field
element in a content type definition (see The content-type Resource).

The following example shows a field definition containing a ui : preview element:

Copyright © 2015-2023 Stibo DX A/S Page 32


http://docs.cuepublishing.com/ece-pub-design-guide/7.15/story_element_types.html
http://docs.cuepublishing.com/ece-pub-design-guide/7.15/the_content_type_resource.html

CUE Tech Guide

<field name="caption" type="basic" mime-type="text/plain">
<ui:label>Caption</ui:label>
<ui:preview/>

</field>

The ui:preview element currently only works for plain text, rich text and image binary fields. If you
add it to other kinds of fields, it will be ignored.

22211 Quick View "Thumbnail" Threshold

In order to ensure that the quick view feature is actually quick, large images are not displayed at full
resolution. Any image above a specified size is replaced by a lower resolution copy. These quick view
copies are referred to as "thumbnails", although they are considerably larger than normal thumbnail
images.

By default, an image is replaced by a thumbnail version if it is larger than 1 megabyte. You can,
however change this default by adding a quickViewThumbnailThreshold property setting to one
of your CUE configuration files:

quickViewThumbnailThreshold: 1500000

The threshold must be specified in bytes.

The quick view thumbnail feature depends on the Content Store metadata extraction feature (see
Metadata Extraction) in order to be able to determine the size of the original image. If this Content
Store feature is not enabled then the original image will always be used, irrespective of the value set
with quickViewThumbnailThreshold.

2.2.22 HTML Source Editing

By default, CUE's rich text editor (used for editing XHTML-based rich text fields, not storyline
content) does not include a source editing feature as in most cases it is not required. In some cases,
however, rich text fields may end up containing unwanted or incorrect HTML markup. In such cases,
access to a source editor may be needed to correct the problem.

You can therefore optionally enable a source editing option in the rich text editor. The editor cannot
be globally enabled, but you can enable it for specific content types and / or specific rich text fields by
adding ui:allow-source-editor elements to a publication's content-type resource. For detailed
instructions on how to do use this element, see allow-source-editor.

For any rich text field where HTML source editing is enabled, the following button is added to the
editor toolbar:

H:~ B I U @B B ¥ x

iii
ifi
il
&

o

The HTML source editing option is intended to be used for the correction/removal of invalid or
unwanted HTML, not for the insertion of custom HTML content.

2.2.23 Cleaning up Pasted Content

Content copied from external sources such as web pages can contain a lot of unwanted and potentially
dangerous markup. CUE therefore filters all content pasted into the rich text editor, removing

Copyright © 2015-2023 Stibo DX A/S Page 33


http://docs.escenic.com/ece-advanced-temp-dev-guide/7.15/metadata_extraction.html
http://docs.escenic.com/ece-resource-ref/7.15/ih_allow_source_editor.html

CUE Tech Guide

everything except a small subset of HTML formats that are considered to be both useful and harmless.
CUE's has two whitelists of allowed formats: a very restrictive one for print stories:

b i u sub sup p br ul ol 1i table thead tbody tfoot tr th td

and a slightly less restrictive one for online stories that includes headings, images and links:

hl h2 h3 h4 h5 h6é b i u sub sup p br alhref] altarget] alrel] ul ol 1i img[src]
imglalt] img[width] img[height] table thead tbody tfoot tr th td

The print whitelist is fixed, but you can override the online whitelist for a rich text fields by adding
aui:whitelisted-elements-onpaste element to the field definition in your publication's
content-type resource. The ui : whitelisted-elements-onpaste element must be added

as a child of the £ield element. If you want to change the whitelist of all the rich text fields in your
publication then you must add a ui : whitelisted-elements-onpaste element to all the rich text
field elements in your content-type resource.

Here is an example whitelist definition that is more restrictive than the default online whitelist:

<ui:whitelisted-elements-onpaste>
hl h2 h3 b i p br alhref] al[target] alrel] al[class=myclass]
</ui:whitelisted-elements-onpaste>

For further information about the ui : whitelisted-elements-onpaste element, see here.

2.2.24 CUE Print Access for Freelancers

To give freelancers full access to CUE print, including content creation rights:

1. If necessary, switch user to root.

$ sudo su
2. Open /etc/escenic/cue-web/config.yml for editing. For example:
# nano /etc/escenic/cue-web/config.yml
3.  Add the following setting:
contractorExtendedAccess = true
Save the file.

Enter:

# dpkg-reconfigure cue-web-3.15
This reconfigures CUE with the change you made.

Note that this freelancer access is limited to CUE print, it does not include online access.

2.2.25 Teaser Anchors in Section Page Previews

CUE can generate teaser-specific section page previews — previews that automatically scroll to a
selected teaser. This can be very useful when working on publications with very long section pages.
Instead of having to search for the teaser you are interested in after displaying the preview, you just
select the teaser in CUE before you generate the preview: the preview then automatically scrolls to the
correct location in the preview.

Copyright © 2015-2023 Stibo DX A/S Page 34


http://docs.escenic.com/ece-resource-ref/7.15/whitelisted_elements_onpaste.html

CUE Tech Guide

CUE generates a teaser-specific preview by including a fragment identifier in the URL passed to the
preview tab:

http://mywebsite.com/#ece-12345?poolId=104&token=-1361898978

This URL will cause the displayed preview to scroll down to the teaser marked with the anchor <a
id="ece-12345"></a>. CUE only includes a fragment ID in the preview URL if a teaser is selected
in the section page editor when the preview button is pressed. The fragment ID has the form:

prefix content-item-id

where prefix is by default ece- and content-item-id is the internal ID of the selected teaser.
You can change the prefix that is used as follows:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example:

# nano /etc/escenic/cue-web/config.yml

3. Add the following setting:

previewAnchorPrefix = "your-preferred-prefix"

Save the file.

Enter:

# dpkg-reconfigure cue-web-3.15
This reconfigures CUE with the change you made.

Required front-end configuration

In order for this feature to work, you must configure your front end application (i.e the CUE Front
Waiter) to add matching HTML anchors to section page teasers. The Waiter application in the
Tomorrow Online demo supplied with CUE Front 1.9 or higher includes a Twig template for this
purpose called anchor. twig:

<a id="ece-{{ articleId }}"></a>

If you want to know more, download the Tomorrow Online demo and look in the Twig templates to see
how it is used.

2.2.26 Metadata Panel Section List Length

At installations where content items may appear in very many sections, displaying the complete list
of sections in the metadata panel can become a performance problem. You can, however, reduce the
impact of this problem by limiting the length of the metadata panel section list.

This option is disabled by default. To enable it, add the following setting to one of your CUE
configuration files:

filteredSectionPanel: true

Copyright © 2015-2023 Stibo DX A/S Page 35



CUE Tech Guide

When this option is enabled, a content item's section list will only contain the section in which the
content item was created and the publication home section. You can expand the list to show all
sections by selecting the link at the top of the metadata panel.

2.2.27 Default Tag Relevance

You can define the default relevance assigned to newly-created tags by adding the following setting to
one of your CUE configuration files:

defaultTagRelevance: relevance

where relevance is one of the following values:

0.2
Corresponds to one bar in the UL

0.4

Corresponds to two bars in the UL
0.6

Corresponds to three bars in the UI.
0.8

Corresponds to four bars in the UL

1.0
Corresponds to five bars in the UL

If the defaultTagRelevance property is not present or is set to any other value, then tags are
assigned a default relevance of 1.0 (five bars).

Tags added by CUE Semantic are assigned a relevance by the back end tagging service, and are
therefore not affected by the defaultTagRelevance setting.

2.2.28 Sections Side Panel Preview

By default, the side panel used to display the section tree also displays a preview of

the currently selected section in CUE's main panel. Generating this preview can negatively affect
performance in some cases, and it is therefore possible to disable it. To do so, add the following setting
to one of your CUE configuration files:

hideSectionPreview: true

2.2.29 Storyline Metrics (Content Store only)

CUE can display character and word counts for the story elements in a storyline and for individual
fields within story elements. If the CUE installation includes a CUE Print back end, then it is also
possible to display "write to fit" line counts. In addition to the counts displayed at the bottom of each
field or story element, a metadata panel can also be used to display summary counts for the
whole storyline.

It is possible to set length constraints for storylines and story element fields, specified as maximum
and/or minimum word and/or character counts. If constraints are specified, then they are reflected in
the metrics displayed for a story. The specified limits are displayed together with the current word /
character counts, and in addition the word / character counts change color to highlight content that is

Copyright © 2015-2023 Stibo DX A/S Page 36



CUE Tech Guide

breaking constraints (yellow if the current count is below the specified minimum and red if it is above
the specified maximum). These constraints are purely advisory. CUE will not prevent the user from
saving or publishing a story that is breaking a length constraint.

The storyline metrics functionality is extremely flexible, and can be configured to display exactly the
figures you need.

The storyline metrics described in this section is primarily aimed at online content. At installations
with a CUE Print back-end, storylines can alternatively be configured to display measurements
supplied by the CUE Print back end. These measurements include print-specific "write-to-fit" line
counts. For further information about this, see section 2.2.8.2.

2.2.29.1 Configuring Character and Word Counts

CUE can display a character / word count below story elements or fields in story elements:

The word ‘plastic’ is ringing in society’s ears. It seems we hear nan-stop about single-use plastics in our everyday lives, and we'e
taking action: people are eschewing disposable coffee cups, refusing plastic straws and calling out supermarkets for wrapping
produce in the stuff. But when you look at the plastic-wrapped tomatoes on a supermarket shelf, what you may fail to see is the
plastic that was used to produce the food in the first place. What if the plastic problem goes back much further?

The counts are constantly updated as the user types, so they are always correct. The counts are only
displayed where they are configured to appear.

To add a count to a story element you need to add a ui : count element to the story element's type
definition. The ui : count element must be inserted as the child of the story-element-type
element:

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type
xmlns="http://xmlns.escenic.com/2008/content-type"
xmlns:ui="http://xmlns.escenic.com/2008/interface-hints" name="headline">
<ui:label>Headline</ui:label>
<ui:icon>headline</ui:icon>
<ui:priority>900</ui:priority>
<ui:count show="true" for="total headlines"/>
<field name="headline" type="basic" mime-type="text/plain">
<ui:title-field/>
</field>
<ui:style>
.story-element-headline [contenteditable="'true'] {
font-size: 2.5em;
}
</ui:style>
</story-element-type>

The show="true" attribute causes counts to be displayed below story elements of this type. If you set
show=false, then the characters and words are counted, but not displayed below the story elements.
The for="total headlines" attribute causes the counts to be added to storyline summaries that
can be displayed on a metadata panel:

METRICS

Copyright © 2015-2023 Stibo DX A/S Page 37



CUE Tech Guide

Specifically, for="total headlines" says that the counts are to be added to summaries called
total and headlines. For information about how storyline count summaries are defined, see

section 2.2.29.2.

When you add a count to a story element type in this way, all of the text in the story element is
counted: all of its text fields, and any child story elements it contains. For some story element types,
you may not want to do this. For an image story element type, for example, you might want to count
the content of the caption field, but not the content of the copyright field. In this case, instead of
adding a ui: count element to the whole story-element-type definition, you can just insert it to
the field definitions you are interested in:

<?xml version="1.0" encoding="UTF-8"?>

<story-element-type xmlns="http://xmlns.escenic.com/2008/content-type"
xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
name="image">

<field name="caption" type="basic" mime-type="text/plain">
<ui:label>Caption</ui:label>
<ui:count show="true" for="total body"/>

</field>

</story-element-type>

2.2.29.2 Configuring a Metrics Panel

A metrics section is only included in a content item's metadata panel if it is configured to do so in the
content item's type definition:

<?xml version="1.0" encoding="UTF-8"?>
<content-type name="story">

<cue:metadata-panel>
cue.general-info
cue.section
cue.metrics

</cue:metadata-panel>
</content-type>
For general information about defining metadata panel sections, see section 2.2.7.

To define the summary counts displayed in the panel, you need to add a
storylineMetrics entry like this to one of your CUE configuration files:

storylineMetrics:

metricPanel:

- identifier: "headlines"
label: "Headline"

- identifier: "body"
label: "Body"

- identifier: "total"
label: "Total"

You can define as many summary counts as you like in this way, and they will all be displayed in the
panel using the specified 1abels. The identifiers are the summary names that must be
referenced in the ui : count element's for attribute. In general, the order of the summary counts

Copyright © 2015-2023 Stibo DX A/S Page 38



CUE Tech Guide

on the panel is determined by the order in which story elements appear in the storyline. A
summary count with the identifier total, however, is always displayed last.

2.2.29.3 Configuring Length Constraints
If you configure length constraints, then they are included in metrics counts as shown below:

79412 Mo constraints.
79 (80) /12 Within max constraint
86 (80) / 14 Outside max constraint
79 (20-) f 12 within min constraint
Outside min constraint
79 (20-80) f 12 ‘Within min and max constraint

86 (20-80) / 14 Dutside max constraint

The above examples include only character constraints, but word constraints are shown in exactly the
same way.

You can configure separate length constraints for storylines and story element fields. The way you
configure constraints for storylines is different to the way you do it for story element fields.

2.2.29.3.1 Story Element Field Length Constraints

To set length constraints for story elements or fields, all you need to do is add ui :minchars,
ui:maxchars, ui :minwords and ui :maxwords elements as children of the story-element-
type or field's ui : count element. For example:

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type
xmlns="http://xmlns.escenic.com/2008/content-type"
xmlns:ui="http://xmlns.escenic.com/2008/interface-hints" name="headline">
<ui:label>Headline</ui:label>
<ui:icon>headline</ui:icon>
<ui:priority>900</ui:priority>
<field name="headline" type="basic" mime-type="text/plain">
<ui:title-field/>
<ui:count show="true" for="total headlines">
<ui:minchars>5</ui:minchars>
<ui:maxchars>50</ui:maxchars>
<ui :maxwords>8</ui:maxwords>
</ui:count>
</field>
<ui:style>
.story-element-headline [contenteditable='true'] {
font-size: 2.5em;
}
</ui:style>
</story-element-type>

You only need to add the constraints you are actually interested in — the ui :minwords constraint is
omitted from the above example.

2.2.29.3.2 Storyline Length Constraints

Storyline length constraints are defined in storyline templates. A storyline template can contain
several sets of constraints for different story sizes (short, medium and long, for example). The actual

Copyright © 2015-2023 Stibo DX A/S Page 39



CUE Tech Guide

constraints used can then be selected by the CUE user when a story based on the template is actually
created. The constraints are defined in a ui: content-length-restrictions element that must
be inserted in the storyline template as a child of the elements element. For example:

<elements>

<ui:content-length-restrictions>
<ui:content-length-constraint name="small">
<ui:label>Small</ui:label>
<ui:minchars>50</ui:minchars>
<ui:maxchars>200</ui:maxchars>
<ui:maxwords>40</ui:maxwords>
</ui:content-length-constraint>
<ui:content-length-constraint name="medium" default="yes">
<ui:label>Medium</ui:label>
<ui:minchars>150</ui:minchars>
<ui:maxchars>800</ui:maxchars>
</ui:content-length-constraint>
<ui:content-length-constraint name="large">
<ui:label>Large</ui:label>
<ui:minchars>500</ui:minchars>
<ui:maxchars>5000</ui:maxchars>
<ui:minwords>250</ui:minwords>
<ui:maxwords>1000</ui:maxwords>
</ui:content-length-constraint>
</ui:content-length-restrictions>

</elements>

The above example defines three different sets of constraints, small, medium and large, with
medium defined as the default. This means that when a content item is created based on this storyline
template, the medium constraints will be preselected. If none of the content-length-constraint
elements include a default="yes" attribute, then when a content item is created based on this
storyline template, no constraints will be set.

Content types that reference storyline templates containing length constraints will usually need to
include a story length field, so that CUE users are able to select the constraint set they want to use. A
story length field is a £ield element that contains a ui: story-size and a ui:hidden element. For
example:

<field name="story-size" type="basic" mime-type="text/plain">
<ui:hidden />
<ui:story-size />

</field>

The ui: story-size element identifies the field as a story size field, triggering CUE to display it as a

drop-down field at the bottom of the panel, where it can be used to select the required length
constraint set for the storyline. You must include a ui : hidden element to ensure that the field is not

displayed as an ordinary content item field. Note the following:

« It does not matter where you put the story size field definition in the content type definition, as long
as it is a valid location for a £ield element.

+ The field's type and mime-type attributes are ignored: the field is always displayed as a drop-
down in CUE.

Copyright © 2015-2023 Stibo DX A/S Page 40



CUE Tech Guide

« The name of the field is not used by CUE, and nor is any ui : 1abel element, should you include
one in the field definition.

The following screenshot shows a panel containing a story size field:
METRICS
Sums Characters f Words
Headline: 24 /5
BOay: 176 / 36
Total: 200 (50-200) / 41 (40)
Est. reading time: 0 minute(s)
Story size
Small

If a storyline template contains only one set of constraints and its default attribute is set to yes then
a story length field is not required.

For a full description of the ui : content-length-restrictions element and its children, see
here.

2.2.30 Preview Control Dialog

CUE previews can be modified by means of a floating control dialog displayed over the preview. You
can configure this dialog by adding the following settings to one of your CUE configuration files:

previewControlSetting:
previewAll: false
visible: false

previewAll is set to true by default. If you set it to f£alse then the dialog's
checkbox will be unchecked by default and previews will not include
unpublished related content.

visible is set to true by default. If you set it to f£alse then the preview control dialog will not be
displayed, meaning the end user cannot control what is shown in previews.

Please note that if the preview controller is enabled then the preview is shown in an iframe. This may
pose a problem for some websites due to how authorization is handled in iframes. If your website
cannot be displayed in an iframe then the preview controller should be disabled.

2.2.31 Inline Link Target Window Default

The field in the rich text editor's dialog lets CUE users select
whether an inline link they insert should be opened in the current window or a new window. By

Copyright © 2015-2023 Stibo DX A/S Page 41


http://docs.escenic.com/ece-resource-ref/7.7/ih_content_length_restrictions.html

CUE Tech Guide

default, the default selection it offers to users is . You can, however, change the default
selection to by adding the following setting to one of your CUE configuration files:
xhtmlDefaultInlineLinkTarget: " blank"

xhtmlDefaultInlineLinkTarget has two possible values:

_self (default)
The default selection offered by CUE is

_blank
The default selection offered by CUE is

2.2.32 Date Picker Default Time

By default, CUE date pickers show the current date and time when first opened. You can if you wish,
disable setting of the current time by adding the following settings to one of your CUE configuration
files:

currentTimeControlSetting:
currentTimeInDatePicker: false

Date pickers will then still show the current date when first opened, but the time will always be set to
00:00 (12:00 AM).

2.2.33 CUE Print Handling in Create New Dialog

At installations with a CUE Print back end, appears by default as an option in the
dialog's drop-down. Selecting offers the user the option of creating
either a ora :
Create new X
CUE Print

CUE Print Text

rch for other options

FUE Print Text v

Story Folder

CUE Print Text

You can if you wish modify this default behavior by adding a
disableCuePrintOptionsInNewContentDialog property to one of your configuration files and

setting it to true. The result of doing this is that no option will appear in the
drop-down. and will then be listed as content type options for all
publications, in the list.

2.2.34 Access Token Refreshment Timing

At CUE installations where login is managed by CUE User Manager or Google/Facebook, the
client is required to refresh its access tokens periodically. By default, CUE refreshes its access
token 30 seconds before it is due to expire. You can, however modify this default by adding a

Copyright © 2015-2023 Stibo DX A/S Page 42



CUE Tech Guide

refreshTokenBeforeInSeconds property to one of your configuration files. You can, for example
increase the setting to 60 seconds as follows:

refreshTokenBeforeInSeconds: 60

2.2.35 Environment Visualization

Most CUE installations have multiple environments: a production environment, a test environment
and a staging environment. Many CUE users will only ever work in the production environment,

but others (developers, testers, maintenance staff and so on) may frequently switch between
environments. For such users, it is very important to keep track of which system they are working in:
much greater care is needed when working in a production environment that when working in a test
environment.

It is therefore possible to set a couple of environment properties when configuring CUE to
clearly visualize which environment this instance is running in. Adding the following to one of your
configuration files, for example:

environment:
name: "Test"
color: "yellow"

will cause CUE's menu bar to be displayed with a yellow background and will also display the name
"Test" in the menu bar. This makes it a lot easier for users to distinguish the CUE instances from one
another.

You can use any valid CSS color specification when setting the color property.

2.2.36 Disabling Search-As-You-Type

By default, the CUE search function starts searching as soon as you start typing. Every character

you type starts a new, more tightly specified search. In most cases, this is the most efficient way to
execute searches: you will often see the result you are looking for before you have completed typing the
search term in your head. However, for some organizations with very large databases, this method of
searching may actually prove too demanding, and cause performance issues. It is therefore possible to
disable it.

To disable the search-as-you-type feature, add the following property setting to one of your
configuration files:

searchAsYouType: false

In order for the search-as-you-type feature to work, CUE adds wildcards to the search terms you
enter. When you disable it, these wild cards are no longer added. Search will therefore return
different (narrower) result sets with search-as-you-type disabled than it does when the feature is
enabled.

2.2.37 Enabling User Tracking

CUE's user tracking feature must never be activated unless you have first entered a written
agreement with Stibo DX.

Copyright © 2015-2023 Stibo DX A/S Page 43



CUE Tech Guide

CUE's user tracking feature is a product development aid intended to help Stibo DX developers
improve the CUE user experience. When it is enabled, CUE user activity is monitored, recorded and
sent to Stibo DX for analysis, where it may be stored for up to six months. The data captured includes
button clicks, link clicks, page views, JavaScript errors, browser types and geographic regions. No
personally identifiable information is collected: IP addresses are 2-byte masked blocks and cookie user
IDs contain no personally identifiable information. Nevertheless, the collection of such data is strictly
controlled by law in many countries. Therefore, this feature should only be enabled if:

o The customer's CUE users have consented to the collection of the data

+ The customer has granted Stibo DX permission to collect and use the data, in writing

To enable user tracking, add the following property settings to one of your configuration files:

analyticsConfig:
enabled: true
customerId: 'jira-project-key'

If the analyticsConfig property is not present in your configuration or if analyticsConfig/
enabled is set to any value other than true, then the user tracking feature will remain disabled.

analyticsConfig/customerId must be set to your organization's project ID in the Stibo DX Jira
system (that is, the project key you use when reporting CUE bugs to Stibo DX). In other words if your
CUE bug report URLs end with /MYPROJECT-nnn, then your customerId is MYPROJECT.

Copyright © 2015-2023 Stibo DX A/S Page 44



CUE Tech Guide

3 Installing and Configuring Plug-ins

CUE's capabilities can be extended by installing plug-ins. CUE plug-ins fall into three categories:

« Base plug-ins supplied by Stibo DX that provide self-contained functional extensions. These plug-
ins have no dependencies other than CUE itself and freely available system components such as
the nodeJS engine. All the information you need to install and configure base plug-ins is here. The
following base plug-ins are currently available:

cue-content-duplication-enrichment-service
This plug-in adds content duplication functions to the home page and
panels in CUE and to the side panel After installing the plug-in, the context
menu displayed by right-clicking or long-pressing a content item in these panels will contain
two new options, and . These options allow you to quickly make
copies of content items.

Base plug-in packages follow CUE version numbering: you should only install base plug-ins that
have the same version number as CUE.

+ CUE plug-ins supplied by Stibo DX. These CUE plug-ins are dependent on Content Store plug-ins
as follows:

cue-plugin-live
Depends on CUE Live.

cue-plugin-menu-editor
Depends on the CUE Menu Editor plug-in.

cue-plugin-video
Depends on the CUE Video plug-in.

These plug-ins are automatically installed together with CUE. Any configuration that might be
required is described in the appropriate Content Store plug-in guide.

+ Third-party plug-ins that are not made by Stibo DX. These plug-ins may or may not have
dependencies other than CUE itself. The information you need to install and configure these plug-
ins must be provided by the plug-in supplier.

Base plug-ins are installed in the same way as CUE itself, using apt-get install, and can either
be installed together with CUE, or at any time later. To install the cue-content-duplication-
enrichment-service plug-in together with CUE, for example, you would do as follows:

# apt-get update
# apt-get install cue-web-3.15 cue-content-duplication-enrichment-service-3.15

To install it on its own after the installation of CUE, you would only need to enter:

# apt-get update
# apt-get install cue-content-duplication-enrichment-service-3.15

For additional instructions regarding the installation of the cue-content-duplication-
enrichment-service plug-in, see section 3.1.

Copyright © 2015-2023 Stibo DX A/S Page 45



CUE Tech Guide

3.1 cue-content-duplication-enrichment-service

This plug-in depends on nodeJS, version 14.16.0 or higher. The node command must be available in
$PATH. To check whether this is the case, enter:

$ which node

If this command does not return the path of the node executable, then you need to either install it
or add its location to $PATH. If node is available, make sure you check its version, since the version
installed by default on Ubuntu systems is too old:

$ node -v

If the version number is less than 14.16.0, then you need to replace it with a newer version. For advice
on how to do this on Ubuntu, see (for example) this page.

3.1.1 Installing cue-content-duplication-enrichment-service

You can install the cue-content-duplication-enrichment-service plug-in either at the
same time as you install CUE itself, or at any time later. The version number of cue-content-
duplication-enrichment-service must match the version number of CUE. To install cue-
content-duplication-enrichment-service on its own after the installation of CUE, log in as
root and enter:

# apt-get update
# apt-get install cue-content-duplication-enrichment-service-3.15

This installs the enrichment service and starts it immediately.

3.1.2 Configuring cue-content-duplication-enrichment-service

To configure the cue-content-duplication-enrichment-service:

1.  Login as root if necessary.

2. Open /etc/escenic/content-duplication-service-3.15/content-duplication-
service.yaml in an editor and add the following content:

server:

port: port-number
ziplineEndpoint: http://ziplinehost/cue-print-zipline/escenic/convert/default
endpoint: http://content-store-host/webservice/index.xml

maxPayloadLimit: "max-payload-size"

where:

« port-number is your preferred port number (the default is 8082)

» ziplinehost is the domain name of your CUE Zipline service host (see note below)
+ content-store-host is the domain name of your Content Store host (see note below

« max-payload-size is the maximum amount of data that will be handled by the duplication
function. The default maximum size is 1mb. If this is insufficient you can set it to a larger
value. You can specify the payload size using a variety of units: b, kb, mb, etc. - for all options,
see the documentation of the bytes node.js library.

Copyright © 2015-2023 Stibo DX A/S Page 46


https://tecadmin.net/install-latest-nodejs-npm-on-ubuntu/
https://www.npmjs.com/package/bytes

CUE Tech Guide

3. You can also optionally add configurations like this for handling unmatched relations:

unmatchedRelationsMapping:
- contentType: storyline
relationGroup: relations

Without such a section, when you duplicate a content item as a different content type, only
relations that have a matching relation type are copied to the new content item. Specifying
unmatchedRelationsMapping allows you prevent these unmatched relations being lost. For
each target content type, you can specify a relation group to which unmatched relations can be
copied.

Save the file.

Restart the service as follows:

# /etc/init.d/content-duplication-service restart

Note: The ziplineEndpoint property is only required if you need the duplication service
to support the conversion of classic rich text-based stories to storyline containers, since this
functionality is dependent on CUE Zipline.

You also need to configure CUE to access the duplication service. To do this:

1.  Create afile called /etc/escenic/cue-web/content-duplication-service.yml, open it
in an editor and add the following content:

enrichmentServices:
- name: "Duplicate Service"
href: "http://myhost:port-number/contentDuplicationService"
title: "Duplicate Service"
triggers:
- name: "on-duplicate"
properties: {}

authorizedEndpoints:
- "http://myhost:port-number/"

extendedContextMenultems:
- name: "duplicate-service"
title: "Duplicate"
trigger: "on-duplicate"
- name: "duplicate-as-service"
title: "Duplicate as ..."
trigger: "on-duplicate"

where:

« myhost is your CUE host's domain name

« port-number is the same port number you specified in the duplication service configuration
file

2. Save the configuration file.

3.  Apply your configuration changes by entering:
# dpkg-reconfigure cue-web-3.15

You should now be able to duplicate content items using the and context
menu options in CUE.

Copyright © 2015-2023 Stibo DX A/S Page 47



CUE Tech Guide

4 Extending CUE

CUE is more than a simple editor for Content Store - it's an extensible platform. It includes three
extension mechanisms that you can use to add your own functionality and to integrate external
services into your editorial workflows. The extension mechanisms are:

Web components
CUE web components are HTML/CSS/Javascript components that you can use to add custom
functionality to CUE. See section 4.1 for further information.

Enrichment services
Enrichment services are a very powerful and flexible mechanism for extending CUE's
functionality. An enrichment service is an HTTP service that communicates with CUE via a
very simple protocol. You can implement your own enrichment services to provide additional
functionality and integrate CUE with other systems in various ways. See section 4.2 for further
information.

Drop resolvers
Drop resolvers are HTTP services, rather like enrichment services. Drop resolvers, however, are
specifically designed to handle the processing and import of foreign objects dropped into CUE.
See section 4.3 for further information.

URL-based content creation
CUE lets you create a draft content item by simply passing a URL to a browser. A script running
in some other application such as Trello, Google Sheets or Slack can simply construct a CUE
URL containing the details of a new content item and pass the URL to a browser. CUE will then
start in the browser and create the requested content item, ready for the user to continue editing
(if required), save and publish. See section 4.4 for further information.

Logout triggers
Alogout trigger is a simple HTTP GET request that is sent to a specified URL when the user logs
out from CUE. It provides a mechanism for integrators to automatically perform other actions
(such as logging out of a VPN) on logout from CUE. For further information see section 4.6.

When a problem arises in CUE, it is sometimes difficult to determine whether the problem is in CUE
itself or in an extension you have added. CUE therefore includes a safe mode feature that lets you
easily disable extensions as a diagnostic aid. For details, see section 4.7.

4.1 Web Components

Web components is the name given to a set of features being added to the W3C HTML and DOM
specifications that support the creation of reusable components in web documents and web
applications.

CUE makes use of this technology to enable the following types of extensions:

Editor side panel
An editor side panel is displayed as a pop-out panel on the left side of a CUE editor window
(similar to an editor panel). A custom editor side panel works in the same way as the

standard side panels: a new button is added to the column on the left side of the display, and
selecting this button opens and closes the panel.

Copyright © 2015-2023 Stibo DX A/S Page 48


https://en.wikipedia.org/wiki/Web_Components

CUE Tech Guide

Editor metadata section
An editor metadata section is displayed in the pop-out attributes panel on the right side of a
CUE editor window (similar to the and sections). A metadata section
works in the same way as the standard attributes sections: a new button is added to the column
on the right side of the display, and selecting this button opens and closes the panel, focused on
the appropriate section.

Custom field editor
A custom field editor extension changes the appearance and behavior of a content item field.
You can, for example, configure CUE to display an integer field in a content item as a graphical
slider instead of displaying a simple text field. You can also use it to display much more complex
components containing many different controls and elements: a color picker component that
offers the user several different ways to choose a color, for example.

Custom storyline element field editor (Content Store only)
A custom storyline element field editor extension changes the appearance and behavior of a
storyline element field. It works in much the same way as a custom field editor, and enables the
same kinds of possibilities. The map and table included in the CUE Content Store's starter pack
are implemented using custom storyline element field editors.

Home page panel
A home page panel occupies the main work area of the CUE home tab. A custom home page
panel works in the same way as the standard and panels: a new button is

added to the column on the left side of the display, and selecting this button displays the panel
in the main work area.

Home page metadata section
A home page metadata section is displayed in the pop-out attributes panel on the right side
of a CUE editor window (similar to the and sections displayed with
the home page panel). A metadata section works in the same way as the standard
attributes sections: a new button is added to the column on the right side of the display, and
selecting this button opens and closes the panel, focused on the appropriate section.

All you need to do to add a web component to CUE is:

« Create a JavaScript file containing the definition of your web component.
« Put the web component definition in a web location that is accessible to CUE.

+ Add information about the web component to a YAML configuration file and save the file in
the CUE configuration folder (/etc/escenic/cue-web). You can either create a separate
configuration file for each of your web components, or create a single configuration file for all of
them.

This process is described in more detail in the following sections.

4.1.1 Creating a Web Component

A web component is an ECMAScript (ES) module. It contains:

« A class extending HTMLE1lement. The class can use the shadowRoot to define local CSS styles.
These styles are only applied to HTML elements inside that shadowRoot — they will not affect any
elements in documents where the web component is displayed.

« A statement to register the class as a custom element. The custom element name must contain a -.

Here is a skeleton web component that you can use as a basis for your own web components:

Copyright © 2015-2023 Stibo DX A/S Page 49



CUE Tech Guide

/o
* Creating the web component
*/
class MyComponent extends HTMLElement ({
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =

<style>
:host { width: 100%; display: block; } /* Styles the web component tag */
</style>
<!-- Add your web component HTML here -->
}
connectedCallback() {

console.log('The CUE interface of the web component:', this.cuelnterface);
// The web component is now attached.
// Add your logic here.

disconnectedCallback () {
// The web component is now detached.
// Add your clean-up logic here.

}

customElements.define ('my-component', MyComponent) ;

/**
* Creating the icon (if required)
*/
class MyComponentIcon extends HTMLElement {
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML = "<!-- Add your web component icon HTML here -->7;

connectedCallback() {
console.log('The CUE interface of the icon:', this.cuelnterface);

// The icon is now attached.
// Add your logic here.

disconnectedCallback () {
// The web component is now detached.
// Add your clean-up logic here.

customElements.define ('my-component-icon', MyComponentIcon);

Field editor web components have no use for an icon, so in this case the icon class can be omitted.

Drag and drop from web components

Copyright © 2015-2023 Stibo DX A/S Page 50



CUE Tech Guide

You can drag objects from all web components except rich text field extensions to drop zones in CUE.
Anywhere in the CUE interface that you can drop an uploaded file, you can also drop an object that
has been dragged from a web component, as long the object is correctly constructed. A correctly
constructed draggable object is a JSON object with a single property, £iles. This property is an array

of objects, each object being composed of three properties:
name
The file name of this object

mimeType
The mime type of this object

dataURL OR url

For external objects, the third property is called dataURL, and holds the content of the object,
encoded as a data URL. The dropped object may, however, in some cases be an existing CUE
content item, in which case the third property is called url and holds the URL of the content

item.

The entire JSON object must be supplied as the drag event's dragData property and be assigned the

mime type application/x-web-component-data.

4.1.2 The CUE Web Component API

A web component in general contains a class that extends HTMLElement. For building
CUE web components, CUE provides its own base class that extends HTMLElement,

cue.core.webcomponents.CUEElement, plus a number of subclasses for use in specific types of

CUE extension. To make a CUE web component you need to extend one of these subclasses.

cue.core.webcomponents.CUEElement itself is defined as follows:

export abstract class CUEElement extends HTMLElement

implements webcomponent.CUEElement {

public user: webcomponent.User;

public endpoints: StringMap<uri.URI>;

public credentials: StringMap<string>;

public dialog: Dialog;

public notification: webcomponent.Notification;

public abstract getTitle(): Promise<Nullable<string>>;
public abstract getLink(): Promise<webcomponent.Nullable<webcomponent.Link>;

}
This class provides four properties and two functions:

user
The current user

endpoints
The URL(s) of CUE's back end(s)

credentials

The credentials needed to access CUE's back end(s), available as:

credentials.escenic
credentials.newsgate
credentials.dc-x

Copyright © 2015-2023 Stibo DX A/S

Page 51


http://dataurl.net/#about

CUE Tech Guide

dialog
An interface that exposes methods for creating dialogs of various kinds. For details, see section
4.1.2.15.

notification
An interface that exposes methods for showing and hiding notifications from web components.
For details, see section 4.1.2.14.

getTitle()
Returns the title of the current editor.

getLink ()
Returns the URL of the content item being edited.

The subclasses fall into three main groups:

Home page panel / Editor side panel extensions
There are two classes you can use for adding home page/editor side panels:

cue.core.webcomponents.SidePanel
Extend this class to display a home page panel that occupies the main work area of the
CUE home tab or a pop-out panel on the left side of a CUE editor window. A custom home
page panel works in the same way as the standard and panels: a new
button is added to the column on the left side of the display, and selecting this button
displays the panel in the main work area. On an editor page, it is displayed as a pop-out
panel on the left side, similar to an editor panel.

cue.core.webcomponents.ListEditor
Extend this class to display a pop-out panel on the left side of a CUE list editor window.
The ListEditor class can only be used in this specific context.

Metadata panel extensions
There are several classes you can use for adding custom sections to the pop-out metadata panel
displayed on the right hand side of various pages. They all work in the same way: a new button is
added to the column on the right side of the display, and selecting this button opens and closes
the panel, focused on the appropriate section. The following classes are available:

cue.core.webcomponents.MetadataPanelCUEElement
Extend this class to add a custom metadata panel section to the following home page

panels:

« The panel

« The panel

« The panel
+ The panel

cue.core.webcomponents.AssignmentEditorMetadataPanel
Extend this class to add a custom metadata panel section to CUE assignment editors.

cue.core.webcomponents.SectionsMetadataPanel
Extend this class to add a custom metadata panel section to the home page
panel.

cue.core.webcomponents.SectionPageMetadataPanel
Extend this class to add a custom metadata panel section to the CUE section page editor.

Copyright © 2015-2023 Stibo DX A/S Page 52



CUE Tech Guide

cue.core.webcomponents.TextEditorMetadataPanel
Extend this class to add a custom metadata panel section to CUE content editors (rich
text).

cue.core.webcomponents.StorylineEditorMetadataPanel
Extend this class to add a custom metadata panel section to CUE content editors
(storyline).

cue.core.webcomponents.StoryFolderEditorMetadataPanel
Extend this class to add a custom metadata panel section to CUE story folder editors.

cue.core.webcomponents.ContentSummaryEditor
Extend this class to add functionality to content summaries.

Editor extensions
There is currently only one such extension:

cue.core.webcomponents.CustomEditorPanel
Extend this class to add a custom editor panel to the storyline editor:

Custom field editors
There are two classes for creating custom field editors:

cue.core.webcomponents.CustomFieldEditor

Extend this class to change the appearance and behavior of a content item field (make an

integer field in a content item be displayed as a graphical slider, for example).

cue.core.webcomponents.CustomStoryElementEditor

Extend this class to change the appearance and behavior of a story element field (make an

integer field in a story element be displayed as a graphical slider, for example).
These classes and their use are described in more detail in the following sections.

The CUE base classes replace an earlier method of implementing CUE web components based on

passing a cueInterface object from CUE to the web component. This mechanism is still available

but is deprecated — the cueInter£face object will be withdrawn in a future release. You should
therefore use the new API described here when implementing new web components. If you need
information about the old cueInterface-based API, please refer to the CUE 3.4 documentation.

4121 SidePanel

cue.core.webcomponents.SidePanel can be used to display either a home page panel that
occupies the main work area of the CUE home tab or a pop-out panel on the left side of a CUE editor
window (similar to an editor panel).

It is defined as follows:

export abstract class SidePanel extends CUEElement
implements webcomponent.Panel {
public name: string; // Name of panel
public homeScreen: boolean; // true: home page panel, false: editor side panel
public active: boolean; // Active state of the panel

// Function to be called whenever active state changes
public abstract addActiveWatcher (fn: (active: boolean) => void): () => void;

// Function to be called whenever active editor changes
public abstract addActiveEditorWatcher (

Copyright © 2015-2023 Stibo DX A/S Page 53



CUE Tech Guide

callback: (editor: Nullable<webcomponent.CUEElement>) => void
y: () => void;

4.1.2.1.1  SidePanel Example Configuration

sidePanels:
- id: "twitter-home-panel"
name: "Twitter Timelines"
directive: "cue-custom-panel-loader"
isAngular: true

webComponent :
modulePath: "webcomponents/twitter/twitter-home-panel.js"
icon: "twitter-home-panel-icon"

mimeTypes: []

homeScreen: true
metadata: []
active: false
order: 705

4,1.2.1.2 SidePanel Example Implementation

window.twttr = (function(d, s, id) {
var js, fjs = d.getElementsByTagName (s) [0],
t = window.twttr || {};
if (d.getElementById(id)) return t;
js = d.createElement (s);
Js.id = id;
js.src = "https://platform.twitter.com/widgets.js";
fjs.parentNode.insertBefore(js, fjs);

t._e = 1[1;

t.ready = function(f) {
t. e.push(f);

}i

return t;

} (document, "script", "twitter-wjs"));
/**
* Twitter Timeline
*/
class TwitterTimeline extends cue.core.webcomponents.SidePanel {
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>

</style>
<hl>Twitter Timelines</hl>
<div id="timeline"></div>

connectedCallback() {
twttr.ready (() => {
twttr.widgets.load() ;
twttr.widgets.createTimeline (

{

Copyright © 2015-2023 Stibo DX A/S

:host { margin: 0 20px 0 20px; padding: 0; width: 100%; display:

block;

}

Page 54



CUE Tech Guide

sourceType: 'profile',

screenName: 'escenic'
}!
this.shadowRoot.querySelector ('#timeline"'),
{

height: 1000

customElements.define ('twitter-home-panel', TwitterTimeline);

/**
* Twitter icon
*/
class TwitterIcon extends cue.core.webcomponents.SidePanel {
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>
:host { margin: 0 Opx 0 Opx; width: 26px; display: inline; float:
margin-right: 18px; }
img { width: 20px; position: relative; top: 4px; left: 10px; }
</style>
<img class="icon">

this.activeIconPath = 'twitter-home-panel-icon-active.png';
this.inactiveIconPath = 'twitter-home-panel-icon.png';

connectedCallback() {
this.activeStateChanged (this.active);
this.addActiveWatcher (active => {
this.activeStateChanged (active) ;

1) ;

activeStateChanged (active) {
let img = this.shadowRoot.querySelector ('img.icon');
if (active) {
img.src = this.getAbsolutePath(this.activelIconPath);
}
else {
img.src = this.getAbsolutePath (this.inactiveIconPath);

getAbsolutePath (path) {
const baseURI = import.meta.url;
return baseURI.substring (0, baseURI.lastIndexOf('/') + 1) + path;

customElements.define ('twitter-home-panel-icon', TwitterIcon);

Copyright © 2015-2023 Stibo DX A/S

left;

Page 55



CUE Tech Guide

4,1.2.2 ListEditor

cue.core.webcomponents.ListEditor can be used to display a pop-out panel on the left side of
a CUE list editor window (similar to a panel).

It is defined as follows:

export abstract class SidePanel extends CUEElement
implements webcomponent.Panel {
public name: string; // Name of panel
public homeScreen: boolean; // true: home page panel, false: editor side panel
public active: boolean; // Active state of the panel

// Function to be called whenever active state changes
public abstract addActiveWatcher (fn: (active: boolean) => void): () => void;

// Function to be called whenever active editor changes
public abstract addActiveEditorWatcher (

callback: (editor: Nullable<webcomponent.CUEElement>) => void
): () => void;

abstract class ListEditor extends cue.core.webcomponents.CUEElement {

// Returns active list
getList (): Nullable<List>;

// Function to be called whenever active list changes
addListWatcher (watcher: () => void): () => void;

interface List {
link: Nullable<Link>;
title: Nullable<sting>;
items: ListItem[];
changelogURI: Nullable<uri.URI>;
1istPoolURI: Nullable<uri.URI>;
section: Nullable<string>;
publication: Nullable<Link>;

interface ListItem {
about: uri.URI;
handle: Nullable<uri.URI>;
pinned: boolean;
priority: number;

41221 ListEditor Example Configuration

sidePanels:
- id: "list-info"

name: "List Info"
directive: "cue-custom-panel-loader"
mimeTypes: [ "x-ece/list" ]

homeScreen: false
requires: ["escenic"]
webComponent:

Copyright © 2015-2023 Stibo DX A/S Page 56



CUE Tech Guide

modulePath: "webcomponents/list-info/list-info.js"
icon: "list-info-icon"
order: 709

41.2.2.2 ListEditor Example Implementation

class ListInfo extends cue.core.webcomponents.ListEditor {
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>
thost {
margin: 0;
padding: 0;
width: 100%
}
hl {
color: #9c9c9c;
font-size: 24px;
font-weight: 300;
}
</style>

<hl>List Info</hl>
<div id="list-info-wrapper"></div>

this.blobUrl = undefined;

connectedCallback() {
this.addListWatcher (() => this.showListInfo());

this.showListInfo () ;

showListInfo () {
const list = this.getList();

const wrapper = this.shadowRoot.querySelector('#list-info-wrapper');

wrapper.innerHTML = list

? "List Title: ${list.title}, Items: ${list.items.length}.’

Y.
’

}

customElements.define ('list-info', ListInfo);

class ListInfoIcon extends cue.core.webcomponents.ListEditor ({

constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>
:host {
margin: 0;
display: block;
}

.icon:before {

Copyright © 2015-2023 Stibo DX A/S

Page 57



CUE Tech Guide

font: 1l6px 'cf';
font-style: normal;
font-weight: normal;
color: #444444;
content: '\\e846"';
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
}
.icon.active:before {
color: #09ab00;
}
</style>
<span class="icon"></span>

connectedCallback () {
this.activeStateChanged (this.active);
this.addActiveWatcher (active => {
this.activeStateChanged (active) ;

1)

activeStateChanged (active) {
const icon = this.shadowRoot.querySelector('.icon');
if (active) {
S (icon) .addClass ('active') ;
} else {
S (icon) .removeClass ('active');

}

customElements.define ('list-info-icon', ListInfolcon);

4.1.2.3 HomePageMetadataPanel

cue.core.webcomponents . HomePageMetadataPanel can be used to add a custom metadata
panel section to the Search, Recent, Dashboard or Archive home page panel:

It is defined as follows:

export abstract class HomePageMetadataPanel extends CUEElement
implements webcomponent.CollectionPanel<webcomponent.Content> {
public name: string; // Name of the metadata panel
public active: boolean; // Active state of the metadata panel

// Function to be called whenever active state changes
public abstract addActiveWatcher (fn: (active: boolean) => void): () => void;

// Function to be called whenever selection in home page panel changes
// Entries that are not accessible by the current user are passed as ‘null’ in the

array
public abstract addFocusWatcher (
fn: (entries: (webcomponent.Content | null)[]) => void

y: () => void;

// Returns currently selected contents
public abstract getSelections(): Promise<webcomponent.Content[]>;

Copyright © 2015-2023 Stibo DX A/S Page 58



CUE Tech Guide

// Following functions return info about current content item

getArticleId: (content: webcomponent.Content) => Nullable<string>;

getArticleUri: (content: webcomponent.Content) => Nullable<string>;

getContentType: (content: webcomponent.Content) => Nullable<string>;

getState: (content: webcomponent.Content) => Nullable<ContentState>;

getPublishedDate: (content: webcomponent.Content) => Nullable<Date>;
}

This PreviewPanel class makes the this.addFocusWatcher () method available to the web
component, so that it can provide a callback function that will be called whenever a new selection is
made in the panel.

4.1.2.3.1 HomePageMetadataPanel Configuration

The following properties must be defined to configure a home page metadata section based on
HomePageMetadataPanel:

- homePanels
An array of directive names of the home screen panel on which the metadata should be made
available. The following directive names may be specified:

cue-search-sidepanel CUE home screen panel
cue-latest-opened- CUE home screen panel
sidepanel

cue-dashboard-sidepanel CUE home screen panel
cue-lists-sidepanel CUE home screen panel

Remember also that the homePanels property name must be preceded by a hyphen (-).

directive
The tag name of the web component. The name you specify must contain a hyphen.

name
The display name of the component. The name is only actually displayed when the mouse is held
over the metadata section button.

webComponent
Information about the web component:

modulePath
The URL of the web component

icon
The tag name of the web component's icon. The name you specify must contain a
hyphen.
order

Determines the position of this section in the attributes panel (and the position of the button).
The sections are arranged in numerical order from lowest to highest.

All the properties must be entered as a list item belonging to a homeScreenMetadata property.
They must be indented correctly and the homePanels property must be preceded by a hyphen (-) to
indicate the start of a new list item. The following example shows the required format:

Copyright © 2015-2023 Stibo DX A/S Page 59



CUE Tech Guide

- homePanels:
directive:
name:

icon:

order: 804

41.23.2

constructor ()
super () ;

<style>
thost {
margin: 0;
padding: 0;
width: 100%
}

hl {
color:
font-size:
font-weight:
}
img, video {
max-width:
}

</style>

’

}
let hide =

hide =
}

if ('hide)

this.attachShadow ({ mode:
this.shadowRoot.innerHTML =

this.blobUrl =

this.info.hidden =

homeScreenMetadata:
["cue-search-sidepanel",

"content-preview"

"Preview"
webComponent :

modulePath:
"content-preview-icon"

{

#9¢c9c9c;
24px;
300;

100%;

<hl>Preview</hl>
<div id="preview-wrapper"></div>

undefined;

connectedCallback () {
this.addFocusWatcher (contents => {

focusedResultChanged (content)
if (this.blobUrl) {
window.URL.revokeObjectURL (this.blobUrl) ;

true;

hide;
{

Copyright © 2015-2023 Stibo DX A/S

'open'

// Because a content can be
if (contents[0]) {
this.focusedResultChanged (contents([0]);

{

if (content && content.mimeType)

HomePageMetadataPanel Example

1) ;

‘null’

{

! .includes(['x-ece/picture’,

if the user doesn't have access to it

'x-ece/video'],

this.showPreview (content.links['edit-media'].uri.toString(),

"cue-latest-opened-sidepanel"]

"http://www.example.com/webcomponents/preview/preview.js"

class PreviewPanel extends cue.core.webcomponents.HomePageMetadataPanel {

content.mimeType) ;

content.mimeType) ;

Page 60



CUE Tech Guide

showPreview (binaryLink, mimeType) {
let xhr = new XMLHttpRequest();

xhr.open ('GET', binaryLink,

xhr.setRequestHeader ('Authorization',

xhr.responseType = 'blob';
xhr.onload = () => {
if (xhr.readyState === 4) {
if (xhr.status === 200) {

true) ;

this.credentials.escenic);

this.blobUrl = window.URL.createObjectURL (xhr.response) ;
this.updatePreview (mimeType) ;

}

else {

console.error (xhr.statusText) ;

}
}i
xhr.onerror = () => {
console.error (xhr.statusText) ;
}i

xhr.send (null) ;

updatePreview (mimeType) {

const wrapper = this.shadowRoot.querySelector ('#preview-wrapper');

if (mimeType === 'x-ece/video') {
wrapper.innerHTML =
T
}
else {

wrapper.innerHTML = '<img src="

' + this.blobUrl +

customElements.define ('content-preview',

/**
* Creating the icon (if required)

*/

PreviewPanel) ;

'<video controls preload="metadata"

LSS

src=""

+ this.blobUrl +

class PreviewlIcon extends cue.core.webcomponents.HomePageMetadataPanel ({

constructor () {
super () ;
this.attachShadow ({ mode: 'open'
this.shadowRoot.innerHTML =
<style>
thost {
margin: 0;
display: block;
}
.icon:before {
font: 16px 'cf';
font-style: normal;
font-weight: normal;
#444444;
content: '\\e879"';
-webkit-font-smoothing:
-moz-osx-font-smoothing: grayscale;

color:

antialiased;

Copyright © 2015-2023 Stibo DX A/S

1)

Page 61



CUE Tech Guide

}
.icon.active:before {
color: #09ab00;
}
</style>
<span class="icon"></span>
}
connectedCallback () {
this.activeStateChanged (this.active);
this.addActiveWatcher (active => {
this.activeStateChanged (active);
1) ;
}
activeStateChanged(active) {
const icon = this.shadowRoot.querySelector('.icon');
if (active) {
S (icon) .addClass ('active');
}
else {
S (icon) .removeClass ('active');

}

customElements.define ('content-preview-icon', PreviewIcon);

41.2.4 AssignmentEditorMetadataPanel

cue.core.webcomponents.AssignmentEditorMetadataPanel can be used to add a custom
metadata panel section to CUE assignment editors.

It is defined as follows:

export abstract class AssignmentEditorMetadataPanel extends CUEElement
implements webcomponent.AssignmentEditor {

// Returns the assignment object opened in the editor

public abstract getAssignment () : webcomponent.Nullable<
webcomponent .Assignment
>;
// Returns the story folder to which the assignment opened in the editor belongs
public abstract getStory(): webcomponent.Nullable<webcomponent.PrintStory>;

4.1.2.4.1  AssignmentEditorMetadataPanel Configuration

editors:
metadata:
- name: "Assignment Info"
directive: "assignment-info"
mimeTypes: [ "x-cci/assignment; type=picture" ]
webComponent:

modulePath: "webcomponents/{assignment-editor-metadata-panel-web-component}"
icon: "assignment-info-icon"
order: 735

Copyright © 2015-2023 Stibo DX A/S Page 62



CUE Tech Guide

4.1.2.4.2  AssignmentEditorMetadataPanel Example

class AssignmentInfo extends cue.core.webcomponents
.AssignmentEditorMetadataPanel {
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =

<style>
:host {
margin: 0;
padding: 0;

width: 100%

}

hl {
color: #9c9c9c;
font-size: 24px;
font-weight: 300;

}

</style>

<hl>Assignment Info</hl>
<div id="assignment-info-wrapper"></div>
<div id="story-info-wrapper"></div>

connectedCallback () {
this.showAssignmentInfo () ;

showAssignmentInfo () {
const assignment = this.getAssignment () ;
const printStory = this.getStory();
const assignmentWrapper = this.shadowRoot.querySelector (

'#assignment-info-wrapper'
)
const storyWrapper = this.shadowRoot.querySelector ('#story-info-wrapper');
assignmentWrapper.innerHTML = assignment
? 'Assignment Name: ${assignment.name}, Items: ${
assignment.items.filter (item => !item.empty) .length

}.

Y.
’

storyWrapper.innerHTML

printStory
? "Story Name: ${printStory.name}.’

Y.
’

}

customElements.define ('assignment-info', AssignmentInfo);

class AssignmentInfoIcon extends cue.core.webcomponents
.AssignmentEditorMetadataPanel {
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>
:host {

Copyright © 2015-2023 Stibo DX A/S Page 63



CUE Tech Guide

margin: 0;
display: block;
}
.icon:before {
font: 16px 'cf';
font-style: normal;
font-weight: normal;
color: #444444;
content: '\\e846"';
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
}
.icon.active:before {
color: #09ab00;
}
</style>
<span class="icon"></span>

connectedCallback() {
this.activeStateChanged (this.active);
this.addActiveWatcher (active => {
this.activeStateChanged (active) ;

1) g

activeStateChanged (active) {
const icon = this.shadowRoot.querySelector('.icon');
if (active) {
S (icon) .addClass ('active') ;
} else {
S (icon) .removeClass ('active');

}
customElements.define ('assignment-info-icon', AssignmentInfolcon);

41.25 SectionsMetadataPanel

cue.core.webcomponents.SectionsMetadataPanel can be used to add a custom metadata
panel section to the Sections home page panel.

It is defined as follows:

export abstract class SectionsMetadataPanel extends CUEElement
implements webcomponent.SectionsPanel {
public active: boolean; // Active state of the metadata panel

// Function to be called whenever selection in Sections home page panel changes
public abstract addFocusWatcher (

fn: (section: webcomponent.Section) => void
y: () => void;

// Returns the sections that are currently selected in the section tree
public abstract getSelections(): webcomponent.Sectionl[];

// Function to be called whenever active state changes
public abstract addActiveWatcher (fn: (active: boolean) => void): () => void;

Copyright © 2015-2023 Stibo DX A/S Page 64



CUE Tech Guide

// Following functions return info about current section

getSectionUri: () => Nullable<string>;
getSectionId: () => Nullable<string>;
getSectionName: () => Nullable<string>;

41.25.1 SectionsMetadataPanel Configuration

The following properties must be defined to configure a home page metadata section based on
SectionsMetadataPanel:

- homePanels
An array of directive names of the home screen panel on which the metadata should be made

available. The array may only contain one directive name in this case: cue-sections-
sidepanel, specifying the home screen panel.

Remember also that the homePanels property name must be preceded by a hyphen (-).
directive

The tag name of the web component. The name you specify must contain a hyphen.
name

The display name of the component. The name is only actually displayed when the mouse is held

over the metadata section button.
webComponent

Information about the web component:

modulePath
The URL of the web component

icon

The tag name of the web component's icon. The name you specify must contain a
hyphen.

order

Determines the position of this section in the attributes panel (and the position of the button).
The sections are arranged in numerical order from lowest to highest.

All the properties must be entered as a list item belonging to a homeScreenMetadata property.
They must be indented correctly and the homePanels property must be preceded by a hyphen (-) to
indicate the start of a new list item. The following example shows the required format:

homeScreenMetadata:
- homePanels: ["cue-sections-sidepanel"]

directive: "section-info"

cssClass: "section-info"

title: "General info" #translate

name: "General Info"

webComponent:
modulePath: "webcomponents/section-info/section-info.js"
icon: "section-info-icon"

order: 702

4.1.25.2  SectionsMetadataPanel Example

class SectionInfo extends cue.core.webcomponents.SectionsMetadataPanel {
constructor () {

Copyright © 2015-2023 Stibo DX A/S Page 65



CUE Tech Guide

super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>
thost {
margin: 0;
padding: O;
width: 100%;
}
::selection {
background: rgba (9, 171, 0, 0.5);
color: white;
}
hl {
display: inline-block;
line-height: 48px;
font-size: 1l4px;
font-weight: 600;
text-transform: uppercase;
color: #797878;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
height: 38px;
margin-bottom: 0;
}
.property {
display: flex;
flex-direction: row;
flex-wrap: wrap;
margin-bottom: 20px;
}
.property .row {
display: flex;
flex-direction: row;
width: 100%;
font-weight: 300;
font-size: 1l4px;
}
.property .row .left {
flex-grow: 1;
width: 20%;
color: #9c9c9c;
}
.property .row .right {
flex-grow: 1;
width: 80%;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
.selectable {
user-select: auto;
}
a {
color: #457dce;
text-decoration: none;
}
</style>

Copyright © 2015-2023 Stibo DX A/S Page 66



CUE Tech Guide

<hl>General info</hl>

<div class="property">

<div id="id" class="row" title="ID">

<div class="left">ID:</div>

<div class="right selectable"></div>

</div>

<div id="name" class="row" title="Name">

<div class="left">Name:</div>

<div class="right"></div>

</div>

<div id="uri" class="row" title="URI">

<div class="left">URI:</div>

<div class="right"></div>

</div>

</div>

<div class="property">

<div id="created" class="row" title="Created">
<div class="left">Created:</div>

<div class="right"></div>

</div>

<div id="modified" class="row" title="Modified">
<div class="left">Modified:</div>

<div class="right"></div>

</div>

<div id="published" class="row" title="Published">
<div class="left">Published:</div>

<div class="right"></div>

</div>

</div>

}

connectedCallback () {
this.addFocusWatcher (section => {
this.focusedSectionChanged (section);
1) ;

focusedSectionChanged (section) {
const addCredentials = xhr => {
xhr.setRequestHeader ('Authorization', this.credentials.escenic);

}i

S.ajax ({
url: section.uri.toString(),
type: 'GET',
beforeSend: addCredentials

.done (document => {
this.updateView (document) ;
1)
.fail (error => {
console.error (error) ;
1)
}i

updateView (document) {
const resolver = function (namespace) {
switch (namespace) {

Copyright © 2015-2023 Stibo DX A/S Page 67



CUE Tech Guide

case 'atom':
return 'http://www.w3.0rg/2005/Atom';
case 'app':
return 'http://www.w3.0rg/2007/app’;
case 'dcterms':
return 'http://purl.org/dc/terms/';
}
bi

const formatDate = date => {
return moment (date, moment.ISO 8601, true).format('l1ll");

}i

const created = document.evaluate('./atom:entry/dcterms:created', document,

resolver)
.iterateNext () .firstChild.nodeValue;
const modified = document.evaluate('./atom:entry/app:edited', document, resolver)
.iterateNext () .firstChild.nodeValue;
const publishedNode = document.evaluate('./atom:entry/atom:published', document,
resolver)
.iterateNext () ;

const published = publishedNode ? formatDate (publishedNode.firstChild.nodeValue)

this.shadowRoot.querySelector ('#id .right').innerHTML =

this.cuelInterface.homePanel.getSectionId();
this.shadowRoot.querySelector ('#name .right').innerHTML =

this.cuelnterface.homePanel.getSectionName () ;

this.shadowRoot.querySelector ('#uri .right').innerHTML = "<a
target=' blank' href='" + this.cuelnterface.homePanel.getSectionUri() + "'>" +
this.cuelnterface.homePanel.getSectionUri () + "</a>";
this.shadowRoot.querySelector ('#created .right').innerHTML = formatDate (created) ;

this.shadowRoot.querySelector ('#modified .right').innerHTML =
formatDate (modified) ;
this.shadowRoot.querySelector ('#published .right').innerHTML = published;
}i
}

customElements.define ('section-info', SectionInfo);

class SectionInfolIcon extends cue.core.webcomponents.SectionsMetadataPanel {
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>
thost {
margin: 0;
display: block;
}
.icon:before {
font: l6px 'cf';
font-style: normal;
font-weight: normal;
color: #444444;
content: '\\e8ad';
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: greyscale;
}

.icon.active:before {

Copyright © 2015-2023 Stibo DX A/S Page 68



CUE Tech Guide

color: #09ab00;

}

</style>

<span class="icon"></span>

}

connectedCallback () {
this.activeStateChanged (this.active);
this.addActiveWatcher (active => {
this.activeStateChanged (active) ;
1) ;

activeStateChanged(active) {
const icon = this.shadowRoot.querySelector('.icon');
if (active) {
S (icon) .addClass ('active');
}
else {
S (icon) .removeClass ('active');
}
}i
}

customElements.define ('section-info-icon', SectionInfolcon);

4.1.2.6 SectionPageMetadataPanel

cue.core.webcomponents.SectionPageMetadataPanel can be used to add a custom metadata
panel section to the CUE section page editor.

It is defined as follows:

export abstract class SectionPageMetadataPanel extends CUEElement

implements webcomponent.SectionPageEditor {

public name?: string; // Name of the metadata panel

public active: boolean; // Active state of the metadata panel

public mimeType: string; // MIME type of content being edited (always x-ece/section-
page in this case)

// Function to be called whenever selection in section page editor changes
// Entries that are not accessible by the current user are passed as ‘null’ in the

array
public abstract addFocusWatcher (
fn: (entries: (webcomponent.Content | null)[]) => void

y: () => void;

// Function to be called whenever something is changed in the section page's owning

section
addSectionWatcher (
watcher: () => void

y: () => void;

// Returns content items currently selected in the section page editor
public abstract getSelections(): Promise<webcomponent.Content[]>;

// Sets the value of the specified teaser field in the currently selected content
item on the section page

public abstract setFieldValue (fieldName: string, value: any): void;

Copyright © 2015-2023 Stibo DX A/S Page 69



CUE Tech Guide

// Returns the section page's owning section
getSection: () => Section;

// Returns the section page
getSectionPage: () => Promise<SectionPage>;

4.1.2.6.1  SectionPageMetadataPanel Configuration

editors:
metadata:
- name: "Preview"

directive: "section-page-content-preview"

mimeTypes: ["x-ece/section-page"]

webComponent :
modulePath: "webcomponents/preview/preview.js"
icon: "section-page-content-preview-icon"

order: 730

4.1.2.6.2 SectionPageMetadataPanel Example

class PreviewPanel extends cue.core.webcomponents.SectionPageMetadataPanel
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>
thost {
margin: O;
padding: O;
width: 100%
}
hl {
color: #9c9c9c;
font-size: 24px;
font-weight: 300;
}
img, video {
max-width: 100%;
}
</style>

<hl>Preview</hl>
<div id="preview-wrapper"></div>

this.blobUrl = undefined;
connectedCallback () {
this.addFocusWatcher (contents => {

if (contents[0]) {
this.focusedResultChanged (contents[0]) ;

Copyright © 2015-2023 Stibo DX A/S

{

// Because a content can be ‘null’ if the user doesn't have access to it

Page 70



CUE Tech Guide

fo

}

Copyri

showPreview (binaryLink,

cusedResultChanged (content) {
if (this.blobUrl) {

window.URL.revokeObjectURL (this.blobUrl) ;

}

let hide true;

if (content && content.mimeType) {
hide

}

this.info.hidden

if ('hide) {

hide;

this.showPreview (content.links['edit-media'].uri.toString(),

mimeType) {

let xhr = new XMLHttpRequest();
xhr.open ('GET', binaryLink, true);
xhr.setRequestHeader ('Authorization',
xhr.responseType = 'blob';
xhr.onload = () => {
if (xhr.readyState === 4) ({
if (xhr.status === 200) {
this.blobUrl =
this.updatePreview (mimeType) ;
}
else {

console.error (xhr.statusText)

}
}i

xhr.onerror () => {
console.error (xhr.statusText) ;

}i

xhr.send(null) ;

updatePreview (mimeType) {
this.shadowRoot.querySelector ('#preview-wrapper');

const wrapper

T,
’

/**
* Creating the icon (if required)
*/
constructor () {
super () ;

this.attachShadow({ mode: 'open'

ght © 2015-2023 Stibo DX A/S

! .includes(['x-ece/picture’,

'x-ece/video'],

this.credentials.escenic);

window.URL.createObjectURL (xhr.response) ;

’

if (mimeType === 'x-ece/video') {
wrapper.innerHTML = '<video controls preload="metadata" src="'
}
else {
wrapper.innerHTML = '<img src="' + this.blobUrl + '">';
}
customElements.define ('section-page-content-preview', PreviewPanel);

1)

content.mimeType) ;

content.mimeType) ;

+ this.blobUrl +

class PreviewIcon extends cue.core.webcomponents.SectionPageMetadataPanel {

Page 71



CUE Tech Guide

this.shadowRoot.innerHTML =
<style>
thost {
margin: 0;
display: block;
}
.lcon:before {
font: 1lépx 'cf';
font-style: normal;
font-weight: normal;
color: #444444;
content: '\\e879';
-webkit-font-smoothing: antialiased;
-moz-osx—-font-smoothing: grayscale;
}
.icon.active:before {
color: #09ab00;
}
</style>
<span class="icon"></span>

’

connectedCallback () {
this.activeStateChanged (this.active);
this.addActiveWatcher (active => {
this.activeStateChanged (active) ;

1) i

activeStateChanged (active) {
const icon = this.shadowRoot.querySelector ('.icon');
if (active) {
S (icon) .addClass ('active');
}
else {
$ (icon) .removeClass ('active');

}

customElements.define ('section-page-content-preview-icon', PreviewIcon);

4.1.2.7 TextEditorMetadataPanel

cue.core.webcomponents.TextEditorMetadataPanel can be used to add a custom metadata

panel section to CUE content editors (rich text). Note that TextEditorMetadataPanel inherits
from StorylineEditorMetadataPanel, allowing you to use it to create web components that
will work for both storylines and classic content items. The isStoryline () method can be used
to determine what kind of content item is currently loaded, allowing you modify the component's
behavior as required.

It is defined as follows:

export abstract class TextEditorMetadataPanel extends StorylineEditorMetadataPanel
implements webcomponent.TextEditor, webcomponent.Panel ({
public name: string; // Name of the metadata panel section
public mimeType: string; // MIME type of content being edited
public active: boolean; // Active state of the metadata panel section

Copyright © 2015-2023 Stibo DX A/S Page 72



CUE Tech Guide

public selection: webcomponent.EditorSelection; // Current text selection in editor

// Returns true if the content item in the editor is a storyline
// in which case you can use the functions inherited from
StorylineEditorMetadataPanel

public abstract isStoryline(): boolean;

// Sends the specified trigger to the specified enrichment service
public abstract triggerService (

triggerName: string,

serviceName: string
) : void;

// Sets the value of the specified field in the content editor.
// Will throw error if CUE fails to set the value
public abstract setFieldValue (fieldName: string, wvalue: any): void;

// Function to be called whenever some content is changed in the editor
public abstract addContentWatcher (

watcher: (content: webcomponent.Content) => void
y: () => void;

// Gets the content being edited
public abstract getContent () : Promise<webcomponent.Content>;

// Returns the xml representation of the content being edited
public abstract getContentXML (): Promise<string | undefined>;

// Returns current container object
getContainer: () => webcomponent.Container;

// Returns an up-to-date preview URL for the current content item
public abstract getPreviewURL(): Promise<string | undefined>;

// Sets current container slug
setContainerSlug: (slug: string) => void;

// Returns whether container slug is editable
isContainerSlugEditable: () => boolean;

// Returns references to all the content items in which this
// content item appears as a relation or inline relation
getContentUsages: () => Promise<webcomponent.Content[]>;

// Returns the Content Store id of the content item being edited
getArticleId(): Nullable<string>;

// Returns the preview URI of the content item being edited
getArticleUri () : Nullable<string>;

// Returns the content type of the content item being edited
getContentType () : Nullable<string>;

// Returns the state of the content item being edited
getState(): Nullable<webcomponent.ContentState>;

// Returns the published date of the content item being edited
getPublishedDate () : Nullable<Date>;

// Returns the tags assigned to the content item being edited

Copyright © 2015-2023 Stibo DX A/S Page 73



CUE Tech Guide

getTags () : Tagll;

The TextEditorMetadataPanel class provides read/write access to the current text selection in the
editor via its selection property:

interface EditorSelection {
getCurrentSelection: () => Selection | undefined;
replaceSelection: (newContent: string, selection: Selection) => void;
forEachBlockInSelection: (
range: Range,
forEachBlock: (element: Element) => void
) => void;
replaceElement: (
element: Element,
elementName: string,
className: string,
text?: string
) => void;
replaceBlockElement: (
element: Element,
elementName: string,
className: string

) => void;
addSelectionWatcher: (

watcher: (selection: Selection | undefined) => void
) => void;

4.1.2.7.1 TextEditorMetadataPanel Configuration

The following properties must be defined to configure an editor metadata section based on
TextEditorMetadataPanel:

- name
The name of the web component, preceded by a hyphen (-). By convention it is usually the same
as the web component's tagName, but does not have to be.

tagName
The tag name of the web component. The name you specify here must contain a hyphen
and must be the name specified with customElements.define () in the web component

definition.

modulePath
The URL of the web component

attributes
Information about the web component:

title
The display name of the component. The name is only actually displayed when the mouse
is held over the metadata section button.

icon
The tag name of the web component's icon. The name you specify must contain a
hyphen.

Copyright © 2015-2023 Stibo DX A/S Page 74



CUE Tech Guide

All the properties must be entered as a list item belonging to a customComponents property. They
must be indented correctly and the name property must be preceded by a hyphen (-) to indicate the
start of a new list item. The following example shows the required format:

customComponents
- name: "content-history"
tagName: "content-history"
modulePath: "webcomponents/history/history.js"
attributes:
title: "Content History"
icon: "content-history-icon"

In order for a metadata section defined in this way to actually appear in CUE, you also need to add a
configuration to one or more content-type resources in the Content Store. For further information

about this, see section 2.2.7.

4.1.2.7.2  TextEditorMetadataPanel Example

class TextModification extends cue.core.webcomponents.TextEditorMetadataPanel ({
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>

thost { width: 100%; display: block; } /* Styles the web component tag */

hl {
color: #9c¢9c9c;
font-size: 24px;
font-weight: 300;

}

button {
display: block;
font-size: 1l6px;
font-family: "Hind", Helvetica Neue, Helvetica, Arial, Sans-serif;
line-height: 32px;
height: 32px;
text-align: center;
border: none;
border-radius: 3px;
background-color: #d3d3d3;
color: #444444;
cursor: pointer;
padding: 0 10px;
margin-bottom: 10px;

}

button:disabled {
background-color: #efefef;
color: #999999;
pointer-events: none;

}

button:hover {
background-color: #efefef;

}

</style>

<hl1>Text Modification</hl>

<pbutton class="character-tag">Insert Character Tag</button>
<button class="macro-tag">Insert Macro Tag</button>

Copyright © 2015-2023 Stibo DX A/S Page 75



CUE Tech Guide

<button class="em-dash">Insert Em dash</button>
<button class="queen">Insert #</button>

connectedCallback () {
if (this.selection) {
this.addButtonEventListeners () ;
this.currentSelection = this.selection.getCurrentSelection();
this.selection.addSelectionWatcher (newSelection => {
this.currentSelection = newSelection;
this.setButtonStates (! !newSelection);
}) i
}

this.setButtonStates (!!this.currentSelection);

addButtonEventListeners () {
this.addCharacterTagEventListener () ;
this.addMacroTagEventListener () ;
this.addEmDashEventListener () ;
this.addQueenEventListener () ;

addCharacterTagEventListener () {
const button = this.shadowRoot.querySelector ('.character-tag');
S (button) .on('click', () => {

if (this.currentSelection.rangeCount) {
this.selection.forEachBlockInSelection (this.currentSelection.getRangeAt (0),

element => {

this.selection.replaceElement (element, 'span', 'quote attrib');
I
}

1)
}
addMacroTagEventListener () {

const button = this.shadowRoot.querySelector ('.macro-tag');

S (button) .on('click', () => {

this.selection.replaceSelection ('<span class:"cci—codes">&lt;extra_leading&gt;</
span>', this.currentSelection);

1) ;

addEmDashEventListener () {
const button = this.shadowRoot.querySelector ('.em-dash');

S (button) .on('click', () => {
this.selection.replaceSelection('—"', this.currentSelection);
1) ;
}
addQueenEventListener () {
const button = this.shadowRoot.querySelector ('.queen');
S (button) .on('click', () => {
this.selection.replaceSelection('#', this.currentSelection);

1)

setButtonStates (enabled) {

Copyright © 2015-2023 Stibo DX A/S Page 76



CUE Tech Guide

}

}

const buttonSelectors =

_.forEach (buttonSelectors,
const button =
S (button) .prop ('disabled',
1)

customElements.define ('text-modification',

constructor () {
super () ;

this.attachShadow ({ mode: 'open'
this.shadowRoot.innerHTML =
<style>
:host { margin: 0;
component icon tag */
.icon:before {
font: 'cf';
font-style: normal;

16px

font-weight: normal;
#444444;
'\\e8ab6"';
-webkit-font-smoothing:

color:
content:

-moz-osx-font-smoothing:

}

.lcon.active:before {

color: #09ab00;

}
</style>

<span class="icon"></span>

connectedCallback() {

['.character-tag',

padding:

'.macro-tag', '.em-dash',

selector => {
this.shadowRoot.querySelector (selector);
lenabled) ;

TextModification);

1) ;

2px; display: block; }

antialiased;

grayscale;

this.activeStateChanged(this.active);

this.addActiveWatcher (active => {

this.activeStateChanged (active) ;

1) ;

activeStateChanged (active) {
const icon =
if (active) {
S (icon) .addClass ('active');
}
else {
S (icon) .removeClass ('active');

customElements.define ('text-modification-icon',

Copyright © 2015-2023 Stibo DX A/S

this.shadowRoot.querySelector ('.icon');

TextModificationIcon) ;

'.queen'];

class TextModificationIcon extends cue.core.webcomponents.TextEditorMetadataPanel {

/* Styles the web

Page 77



CUE Tech Guide

41.2.7.3

TextEditorMetadataPanel / Enrichment Service Example

This example shows how a TextEditorMetadataPanel web component can be used to invoke an
enrichment service. The TextEditorMetadataPanel configuration looks like this:

editors:
metadata:
- name: "Enrichment service"
"enrichment-service"
mimeTypes: ["x-ece/story"]
webComponent:
modulePath:

icon:

directive:

"enrichment-service-icon"

order: 731

In this case, an enrichment service configuration is also required:

enrichmentServices:
- name: "Text plain service"

href: "http://localhost:8082/textPlainService"

title: "Text plain service"

triggers:

"on-click"

properties: {}

"VDF payload service"

— name:

name:
href:

title:
triggers:

"VDF payload service"

"on-click"

{}

- name:
properties:

The web component implementation looks like this:

class EnrichmentService extends cue.core.webcomponents
constructor () |
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML
<style>
thost {
margin: 0;
padding: 0;
width: 100%;
}
::selection {
background: rgba(9, 171, 0, 0.5);
color: white;
}
hl {
color: #9c9c9c;
font-size: 24px;
font-weight: 300;
}
.property {
display: flex;

flex-direction: row;
flex-wrap:

margin-bottom: 20px;

wrap;

Copyright © 2015-2023 Stibo DX A/S

"webcomponents/enrichment-service.js"

"http://localhost:8082/vdfPayloadService/payload"

.TextEditorMetadataPanel {

Page 78



CUE Tech Guide

.property .row {
display: flex;
flex-direction: row;
width: 100%;
font-weight: 300;
font-size: 1l4px;

}

.property .row .left {
flex-grow: 1;
width: 30%;
color: #9c9c9c;

}

.property .row .right {
flex-grow: 1;
width: 70%;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;

}

</style>

<hl1>Enrichment service</hl>
<div class="property">
<div>
<button class="text-plain">Invoke Service (text/plain)</button>
</div>
<hr/>
<div>
<button class="vdf-payload">Invoke Service (vdf)</button>
</div>
</div>

}i

connectedCallback() {
const textPlain = this.shadowRoot.querySelector ('.text-plain');
S (textPlain) .on('click', () => {
this.triggerService ('on-click', 'Text plain service');
1)
const vdfPayload = this.shadowRoot.querySelector ('.vdf-payload'):;
$ (vdfPayload) .on('click', () => {
this.triggerService ('on-click', 'VDF payload service');

1) ;

customElements.define ('enrichment-service', EnrichmentService);

constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>
thost {
margin: 0;
display: block;
}
.icon:before {

Copyright © 2015-2023 Stibo DX A/S

class EnrichmentServicelIcon extends cue.core.webcomponents.TextEditorMetadataPanel {

Page 79



CUE Tech Guide

font: 1l6px 'cf';
font-style: normal;
font-weight: normal;
color: #444444;
content: '\\eOf3';

-webkit-font-smoothing:
-moz-osx-font-smoothing:

}
.lcon.active:before {
color: #09ab00;
}
</style>
<span class="icon"></span>

}

connectedCallback () {

antialiased;

greyscale;

this.activeStateChanged (this.active);
this.addActiveWatcher ((active) => {
this.activeStateChanged (active);

1) ;

activeStateChanged (active) {

let icon = this.shadowRoot.querySelector('.icon');

if (active) {

S (icon) .addClass ('active');

}

else {

S (icon) .removeClass ('active');

customElements.define ('enrichment-service-icon',

EnrichmentServiceIcon) ;

For detailed information about enrichment services, see section 4.2.

41274

TextEditorMetadataPanel / History Example

This example shows how to add a "history" metadata section using TextEditorMetadataPanel.

The configuration looks like this:

customComponents
- name: "content-history"
tagName: "content-history"

modulePath: "webcomponents/history/history.js"

attributes:
title: "Content History"
icon: "content-history-icon"

The web component implementation looks like this:

class HistoryElement extends cue.core.webcomponents

constructor () {
super () ;

this.attachShadow ({ mode:
this.shadowRoot.innerHTML =

Copyright © 2015-2023 Stibo DX A/S

'open'

1)

.TextEditorMetadataPanel {

Page 80



CUE Tech Guide

<style>

thost {
margin: 0;
padding: 0;
width: 100%

}

hl {
color: #9c9c9c;
font-size: 24px;
font-weight: 300;

}

.entry {
width: 100%;
display: flex;
flex-direction: row;

}

.state {
width: 25%

}

.date {
width: 42%;

}

.author {
width: 33%;

}

</style>

<hl>History</hl>
<div class="entries"></div>

connectedCallback () {
this.fetchHistory();
this.addContentWatcher (() => {
this.fetchHistory();
1) ;

fetchHistory () {
this.getContent () .then (content => ({
const historyLinks = content.links['http://www.vizrt.com/types/relation/log'];
if (historyLinks && historyLinks.length > 0) {
const historyLink = historyLinks[O0];
S.ajax ({
url: historyLink.uri.toString(),
type: 'GET',
accept: historyLink.mimeType.format (),
beforeSend: xhr => {
xhr.setRequestHeader ('Authorization', this.credentials.escenic);
}V
success: result => {
this.displayHistory (result) ;
}!
error: (request, error) => {
console.error (error) ;

Copyright © 2015-2023 Stibo DX A/S Page 81



CUE Tech Guide

displayHistory (document) {
const entriesDiv = this.shadowRoot.querySelector ('.entries');
const parsedEntries = this.parseDocument (document) ;
entriesDiv.innerHTML = '';
parsedEntries. forEach (entry => {
entriesDiv.innerHTML += '<div class="entry">' +
'<span class="state">' + entry.state + '</span>' +
'<span class="date">' + entry.updated.format('111') + '</span>' +
'<span class="author">' + entry.author + '</span>' +

'</div>";

parseDocument (document) {
const resolver = function (namespace) {
switch (namespace) {
case 'app':
return 'http://www.w3.0rg/2007/app’;
case 'atom':
return 'http://www.w3.org/2005/Atom';
case 'vaext':
return 'http://www.vizrt.com/atom-ext';
}
}i

const entries = document.evaluate('//atom:entry', document, resolver);
let entry = entries.iterateNext();
let parsedEntries = [];

while (entry) {
const updated = document.evaluate('./atom:updated', entry,

resolver) .iterateNext () .firstChild.nodeValue;
const state = document.evaluate('./app:control/vaext:state', entry,
resolver) .iterateNext () .attributes.getNamedItem('name') .value;
const authorNode = document.evaluate('./atom:author/atom:name', entry,
resolver) .iterateNext () .firstChild;
const author = authorNode ? authorNode.nodeValue : '';
parsedEntries.push ({
updated: moment (updated, moment.ISO 8601, true),
state: state,
author: author
});

entry = entries.iterateNext();

}

return parsedEntries;

}

customElements.define ('content-history', HistoryElement);

/**
* Creating the icon (if required)
*/
class HistoryIcon extends cue.core.webcomponents.TextEditorMetadataPanel ({
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>

Copyright © 2015-2023 Stibo DX A/S Page 82



CUE Tech Guide

thost {
margin: 0;
display: block;
}
.icon:before {
font: 1l6px 'cf';
font-style: normal;
font-weight: normal;
color: #444444;
content: '\\e8bo';
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
}
.icon.active:before {
color: #09ab00;
}
</style>
<span class="icon"></span>

’

connectedCallback () {
this.activeStateChanged (this.active);
this.addActiveWatcher (active => {
this.activeStateChanged (active) ;

1) g

activeStateChanged (active) {
const icon = this.shadowRoot.querySelector('.icon');
if (active) {
S (icon) .addClass ('active');
}
else {
$ (icon) .removeClass ('active');

}

customElements.define ('content-history-icon', HistoryIcon);

4.1.2.75  TextEditorMetadataPanel / Content XML Example

This example shows how to add a "Content XML" metadata section using
TextEditorMetadataPanel. The configuration looks like this:

customComponents
- name: "content-xml"
tagName: "content-xml"
modulePath: "webcomponents/content-xml/content-xml.js"
attributes:
title: "Content XML"
icon: "content-xml-icon"

The web component implementation looks like this:

const script = document.createElement ('script');

script.src = '//cdn.jsdelivr.net/gh/highlightjs/cdn-release@9.18

highlight.min.js’';

Copyright © 2015-2023 Stibo DX A/S

.0/build/

Page 83



CUE Tech Guide

document.head.appendChild (script) ;

class ContentXml extends cue.core.webcomponents.TextEditorMetadataPanel {
constructor () {
super () ;

this.attachShadow ({mode: 'open'});

this.shadowRoot.innerHTML =

<style>

@import url('https://cdn.jsdelivr.net/gh/highlightjs/cdn-release@9.18.0/build/styles/
default.min.css');

thost {
margin: O;
padding: 0;

width: 100%;

}

::selection {
background: rgba(9, 171, 0, 0.5);
color: white;

}

hl {

color: #9c9c9c;
font-size: 24px;
font-weight: 300;
}

</style>

<hl>Content XML</h1>
<pre><code class="xml"></code></pre>
<button class="content-xml">Content XML</button>

}

async connectedCallback() {
this.addButtonEventListener () ;
}

addButtonEventListener () {

S (this.shadowRoot.querySelector ('.content-xml')).on('click', () => this.prettyXML()):;
}

async prettyXML () |

const xmlElement = this.shadowRoot.querySelector ('.xml'");
const sourceXML = await this.getContentXML () ;

const html = this.htmlEscape (this.prettifyXml (sourceXML)) ;
S (xmlElement) .html (html) ;

hljs.highlightBlock (xmlElement) ;

prettifyXml (sourceXml) {
const xmlDoc = new DOMParser () .parseFromString (sourceXml, 'application/xml');
const xsltDoc = new DOMParser () .parseFromString ([
'<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">",
' <xsl:strip-space elements="*"/>"',
<xsl:template match="para[content-style] [not (text())]">",
<xsl:value-of select="normalize-space(.)"/>"',
' </xsl:template>',
' <xsl:template match="node () |@*">"',
<xsl:copy><xsl:apply-templates select="node() |@*"/></xsl:copy>"',

Copyright © 2015-2023 Stibo DX A/S Page 84



CUE Tech Guide

' </xsl:template>',

' <xsl:output indent="yes"/>',
'</xsl:stylesheet>',
].join('\n'"), 'application/xml');

const xsltProcessor = new XSLTProcessor () ;
xsltProcessor.importStylesheet (xsltDoc) ;

const resultDoc = xsltProcessor.transformToDocument (xmlDoc) ;
return new XMLSerializer().serializeToString(resultDoc) ;

}

htmlEscape (s) {

return s

.replace(/&/g, '&amp;"')
.replace (/</g, '&lt;"'")
.replace (/>/g, '&gt;"');
}

}

customElements.define ('content-xml', ContentXml);

class ContentXmlIcon extends cue.core.webcomponents.TextEditorMetadataPanel {
constructor () {
super () ;

this.attachShadow ({mode: 'open'});
this.shadowRoot.innerHTML =
<style>

thost {

margin: O;

display: block;

}

.lcon:before {

font: 1l6px 'cf';

font-style: normal;

font-weight: normal;

color: #444444;

content: '<x>';
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: greyscale;
}

.icon.active:before {

color: #09ab00;

}

</style>

<span class="icon"></span>

}

connectedCallback () {
this.activeStateChanged (this.active);
this.addActiveWatcher (function (active) {
this.activeStateChanged (active) ;
}.bind(this)) ;

}

activeStateChanged (active) {

var icon = this.shadowRoot.querySelector('.icon');
if (active) {

$(icon) .addClass ('active');

Copyright © 2015-2023 Stibo DX A/S Page 85



CUE Tech Guide

} else {
S (icon) .removeClass ('active');

}
}
}

customElements.define ('content-xml-icon', ContentXmlIcon);

41276  TextEditorMetadataPanel / Container slug Example

This example shows how to add a "Container Slug" metadata section using
TextEditorMetadataPanel to modify a container slug. The configuration looks like this:

customComponents
- name: "slug-modification"
tagName: "slug-modification"
modulePath: "webcomponents/slug-modification/slug-modification.js"
attributes:
title: "Slug Modification"
icon: "slug-modification-icon"

The web component implementation looks like this:

class SlugModification extends cue.core.webcomponents.TextEditorMetadataPanel ({
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =

<style>

thost { width: 100%; display: block; }
hl {

color: #9c9c9c;

font-size: 24px;

font-weight: 300;

}

.slug-text {

padding: 10px 5px;

}

.slug-text:hover ({

border: 1lpx solid grey;

}

.slug-input {

width: 100%;

}

</style>

<hl1>Slug Modification</hl>
<div class="slug-text" title="Click to Edit"></div>
<input type="text" class="slug-input" hidden>

’

}

connectedCallback () {
this.loadSlug() ;
this.addSlugEventListener () ;
this.addContentWatcher (() => {

Copyright © 2015-2023 Stibo DX A/S Page 86



CUE Tech Guide

this.loadSlug ()
1)
}

loadSlug () {

const container =
if (container.slug) {
const slugText =

$ (slugText) .html (container.slug) ;

}
}

addSlugEventListener () {
const slugInput =
const slugText =

$ (slugText) .on('click', ()

:>{

this.getContainer () ;

if (this.isContainerSlugEditable()) {
'block'");

$ (slugInput) .css('display',
const container =

$ (slugText) .css('display’',
}
1)

$ (slugInput) .on('keyup', e
if (e.keyCode === 13) {

=

this.getContainer () ;
$ (slugInput) .val (container.slug) ;
'none') ;

this.setContainerSlug($ (slugInput) .val());

$ (slugInput) .css('display',

$ (slugText) .css('display’',
}

1) ;

}

}

customElements.define ('slug-modification’',

'none') ;
$ (slugText) .html ($ (slugInput) .val());

'block');

this.shadowRoot.querySelector ('.slug-text');

this.shadowRoot.querySelector ('.slug-input');
this.shadowRoot.querySelector ('.slug-text');

SlugModification);

class SlugModificationIcon extends cue.core.webcomponents.TextEditorMetadataPanel ({

constructor () {
super () ;

this.attachShadow ({ mode: 'open' });

this.shadowRoot.innerHTML =

<style>

:host { margin: 0; padding: 2px; display: block;
tag */

.icon:before {

font: 1l6px 'cf';

font-style: normal;

font-weight: normal;

color: #444444;

content: 'Sl1l';

-webkit-font-smoothing: antialiased;

-moz-osx-font-smoothing: grayscale;

}
.lcon.active:before {
color: #09ab00;

}
</style>

Copyright © 2015-2023 Stibo DX A/S

}

/* Styles the web component icon

Page 87



CUE Tech Guide

<span class="icon"></span>
;

}

connectedCallback () {
this.activeStateChanged (this.active);
this.addActiveWatcher (active => {
this.activeStateChanged (active) ;

1) ;

}

activeStateChanged (active) {

const icon = this.shadowRoot.querySelector('.icon');
if (active) {

S (icon) .addClass ('active');

}

else {

S (icon) .removeClass ('active');

}

}

}

customElements.define ('slug-modification-icon', SlugModificationIcon);

4.1.2.7.7  TextEditorMetadataPanel / Field editor Example

This example shows how to add a "Field editor" metadata section using TextEditorMetadataPanel

to modify a field. The configuration looks like this:

customComponents
- name: "field-editor"
tagName: "field-editor"
modulePath: "webcomponents/field-editor/field-editor.]js"
attributes:
title: "Field editor"
icon: "field-editor-icon"

The web component implementation looks like this:
class FieldEditor extends cue.core.webcomponents.TextEditorMetadataPanel
constructor () {

super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =

<style>
thost { width: 100%; display: block; }
hl {

color: #9c9c9c;
font-size: 24px;
font-weight: 300;

}

.slug-text {

padding: 10px 5px;

}

.slug-text:hover {
border: 1lpx solid grey;

Copyright © 2015-2023 Stibo DX A/S

Page 88



CUE Tech Guide

}

.slug-input {
width: 100%;
}

</style>

<hl>Field Editor</hl>
<input type="text" class="title-field" placeholder="Title">

’

}

async connectedCallback() {
this.addContentWatcher (content => {
this.setViewValue (content.values['title']);
1) ;

const content = await this.getContent();
this.setViewValue (content.values['title']);

this.addFieldChangelListener () ;
}

addFieldChangelListener () {

const field = this.shadowRoot.querySelector('.title-field'");
$(field) .on('change', () => {

this.setValue('title', $(field).val());

1) ;

}

setViewValue (value) {

const field = this.shadowRoot.querySelector('.title-field'");
S (field) .val (value) ;

}

setValue (key, value) {

try {

this.setFieldValue (key, value);

} catch (e) {

console.error( Failed to set ${key} value!’ ', e);
}

}

}

customElements.define('field-editor', FieldEditor);

class FieldEditorIcon extends cue.core.webcomponents.TextEditorMetadataPanel ({
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =

<style>

thost { margin: 0; padding: 2px; display: block; } /* Styles the web component icon
tag */

.icon:before {

font: 1l6épx 'cf';

font-style: normal;

font-weight: normal;

color: #444444;

content: 'E';
-webkit-font-smoothing: antialiased;

Copyright © 2015-2023 Stibo DX A/S Page 89



CUE Tech Guide

-moz-osx-font-smoothing: grayscale;
}

.icon.active:before {

color: #09ab00;

}

</style>

<span class="icon"></span>

}

connectedCallback() {
this.activeStateChanged (this.active);
this.addActiveWatcher (active => {
this.activeStateChanged (active);

1)

}

activeStateChanged (active) {

const icon = this.shadowRoot.querySelector('.icon');
if (active) {

S (icon) .addClass ('active');

}

else {

S (icon) .removeClass ('active');

}

}

}

customElements.define ('field-editor-icon', FieldEditorIcon);

4.1.2.7.8 TextEditorMetadataPanel / Usages Example

This example shows how to add a "Usages" metadata section using TextEditorMetadataPanel
to return references to all the content items in which this content item appears as a relation or inline

relation. The configuration looks like this:

customComponents
- name: "usages"
tagName: "content-usages"
modulePath: "webcomponents/usages.js"
attributes:
title: "Usages" #translate
icon: "usages-icon"

The web component implementation looks like this:

class Usages extends cue.core.webcomponents.TextEditorMetadataPanel ({
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =

<style>

:host { width: 100%; display: block; 1}
hl {

color: #9c9c9c;

Copyright © 2015-2023 Stibo DX A/S

Page 90



CUE Tech Guide

font-size: 24px;
font-weight: 300;
}

.slug-text {
padding: 10px 5px;
}

.slug-text:hover {
border: 1lpx solid grey;
}

.slug-input {
width: 100%;

}

</style>

<hl>Content Usages</hl>
<ul class="usages"></ul>

’

async connectedCallback() {

usages.forEach (usage => {

1)

}

constructor () {
super () ;

this.attachShadow ({ mode:
this.shadowRoot.innerHTML
<style>

icon tag */
.icon:before {
font: 16px 'cf';
font-style: normal;
font-weight: normal;
color: #444444;
content: 'U';

}

.icon.active:before {
color: #09ab00;
}

</style>
<span class="icon"></span>

’

connectedCallback() {

Copyright © 2015-2023 Stibo DX A/S

usage.links['alternate'].uri.toString()
$S{usage.values['title']}</a></span></1i>")

thost { margin: 0; padding:

const usages = await this.getContentUsages();

customElements.define ('content-usages', Usages);

)

display: block;

-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;

this.activeStateChanged (this.active);

}

const ul = $(this.shadowRoot.querySelector ('.usages'));
ul.append('<li><a href="${usage.links['alternate'] ?
usage.links['self'].uri.toString() }"><span>

class UsagesIcon extends cue.core.webcomponents.TextEditorMetadataPanel {

/* Styles the web component

Page 91



CUE Tech Guide

this.addActiveWatcher (active => {
this.activeStateChanged (active) ;

1)

activeStateChanged (active) {
const icon = this.shadowRoot.querySelector('.icon');
if (active) {
$(icon) .addClass ('active');
}
else {
$ (icon) .removeClass ('active');

}

customElements.define ('content-usages—-icon', UsagesIcon);

4.1.2.8 StorylineEditorMetadataPanel

cue.core.webcomponents.StorylineEditorMetadataPanel can be used to add a custom
metadata panel section to CUE content editors (storyline).

It is defined as follows:

export abstract class StorylineEditorMetadataPanel extends CUEElement {

// Returns the storyline being edited
public storyline: webcomponent.Storyline;

// Function to be called whenever the storyline changes
public abstract addStorylineWatcher (

watcher: (storyline: webcomponent.Storyline) => void
y: () => void;

// Function to be called whenever a new story element gets the focus in the editor
public abstract addStoryElementFocusWatcher (

watcher: (storyelement: webcomponent.StoryElement) => void
): () => void;

// Function to be called whenever the text selection changes in the editor
public abstract addTextSelectionWatcher (

watcher: (selection: webcomponent.StorylineTextSelection) => void
y: () => void;

// Gets the story element currently in focus
getFocusedStoryElement () : webcomponent.StoryElement | undefined;

// Sets the value of the specified field in the specified story element in the
editor
public abstract setStoryElementFieldValue (
storyElementId: string,
fieldName: string,
fieldvalue: any
) : void;

// Sets the value of the story element in the editor
public abstract updateStoryElementValue (
storyElementId: string,
fieldvalue: any

Copyright © 2015-2023 Stibo DX A/S Page 92



CUE Tech Guide

) : void;

4.1.2.8.1  StorylineEditorMetadataPanel Configuration

editors:
metadata:
- name: "storyline-stat"
directive: "storyline-stat"
cssClass: "storyline-stat"
title: "Storyline Stat" #translate

webComponent :
modulePath: "webcomponents/storyline/storyline-stat.js"
icon: "storyline-stat-icon"
mimeTypes: ["x-ece/story", "x-ece/new-content;
order: 731
4.1.2.8.2  StorylineEditorMetadataPanel Example
const titleShortcut = 'wct';
const dummyTitle = 'Cool Title from Storyline stat web component';
const bodyShortcut = 'wcbd';
const dummyBody = 'Lorem ipsum dolor sit amet,
eiusmod tempor incididunt ut ' +

lorem."'

constructor () {
super () ;

this.attachShadow ({mode: 'open'});
this.shadowRoot.innerHTML =
<style>
thost {
margin: 0;
padding: 0;
width: 100%;
}
::selection {
background: rgba(9, 171, 0, 0.5);
color: white;
}
hl {
display: inline-block;
line-height: 48px;
font-size: 1l4px;
font-weight: 600;
text-transform: uppercase;
color: #797878;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
height: 38px;
margin-bottom: 0;
}
h2 {

Copyright © 2015-2023 Stibo DX A/S

type=story"]

consectetur adipiscing elit,

'labore et dolore magna aliqua. Magna etiam tempor orci eu. Sed libero enim

'sed faucibus turpis in eu mi. Urna porttitor rhoncus dolor purus non enim '

sed do

"o+
+

'praesent elementum. Magna fermentum iaculis eu non diam phasellus vestibulum

class StorylineStatPanel extends cue.core.webcomponents.StorylineEditorMetadataPanel {

Page 93



CUE Tech Guide

display: inline-block;
font-size: 13px;
font-weight: 600;

color: #797878;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
margin-bottom: 0;

}

.property {

display: flex;
flex-direction: row;
flex-wrap: wrap;
margin-bottom: 20px;

}

.property .row, .elementId ({
display: flex;
flex-direction: row;
width: 100%;
font-weight: 300;
font-size: 1l4px;

}

.property .row .left {
flex-grow: 1;

width: 80%;

color: #9c9c9c;

}

.property .row .right {
flex-grow: 1;

width: 20%;

white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}

.property .elementId .left ({
flex-grow: 1;

width: 10%;

color: #9c9c9c;

}

.property .elementId .right ({
flex-grow: 1;

width: 90%;

white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}

.property .row.total {
background: #efefef;
font-weight: bold;

}

</style>

<hl>Storyline Stats</hl>

<div class="property">

<div id="headline" class="row">

<div class="left">Number of headlines:</div>
<div class="right"></div>

</div>

<div id="paragraph" class="row">

<div class="left">Number of paragraph:</div>

Copyright © 2015-2023 Stibo DX A/S Page 94



CUE Tech Guide

<div class="right"></div>

</div>

<div id="lead text" class="row">

<div class="left">Number of Lead Text:</div>
<div class="right"></div>

</div>

<div id="image" class="row">

<div class="left">Number of images:</div>
<div class="right"></div>

</div>

<div id="video" class="row">

<div class="left">Number of videos:</div>
<div class="right"></div>

</div>

<div id="embed" class="row">

<div class="left">Number of embeds:</div>
<div class="right"></div>

</div>

<div id="others" class="row">

<div class="left">Others Elements:</div>
<div class="right"></div>

</div>

<div id="total" class="row total">

<div class="left">Total Count:</div>

<div class="right"></div>

</div>

</div>

<h2>Focus Element Stats:</h2>

<div class="property">

<div id="id" class="elementId">

<div class="left">Id:</div>

<div class="right"></div>

</div>

<div id="general" class="row">

<div class="left">Number of general fields:</div>
<div class="right"></div>

</div>

<div id="settings" class="row">

<div class="left">Number of settings fields:</div>
<div class="right"></div>

</div>

<div id="chars" class="row">

<div class="left">Number of Chars:</div>
<div class="right"></div>

</div>

</div>

<h2>Selection Stats:</h2>

<div class="property">

<div id="selWords" class="row">

<div class="left">Number of words:</div>
<div class="right"></div>

</div>

<div id="selChars" class="row">

<div class="left">Number of Chars:</div>
<div class="right"></div>

</div>

<div id="selVowels" class="row">

<div class="left">Number of vowels:</div>
<div class="right"></div>

Copyright © 2015-2023 Stibo DX A/S Page 95



CUE Tech Guide

</div>
</div>

’

connectedCallback () {
this.updateView() ;
this.addStorylineWatcher (storyline => {
this.storyline = storyline;
this.updateView () ;
this.fillStoryElementTitleAndBody () ;
1)
this.addStoryElementFocusWatcher (storyelement =>
this.updateViewOnStoryElementFocus (storyelement)) ;
this.addTextSelectionWatcher (selection =>
this.updateViewOnSelectionChange (selection)) ;

}

updateView () {
const totalCount = this.storyline.elements.length;
const storyElements = this.getStoryElements();
const getElementsByType = type => storyElements

.filter (element => element.model.name === type);

const headlineCount = getElementsByType ('headline').length;
const paragraphCount = getElementsByType ('paragraph') .length;
const leadTextCount = getElementsByType ('lead text').length;
const imageCount = getElementsByType ('image').length;
const videoCount = getElementsByType ('video').length;
const embedCount = getElementsByType ('embed') .length;
const others = totalCount -
(headlineCount
paragraphCount
leadTextCount
imageCount
videoCount
embedCount) ;

+ + + + +

this.shadowRoot.querySelector
this.shadowRoot.querySelector

this.shadowRoot.querySelector
this.shadowRoot.querySelector
this.shadowRoot.querySelector
this.shadowRoot.querySelector

'#video .right').innerHTML = videoCount;
'#embed .right').innerHTML = embedCount;
#others .right').innerHTML = others;

(
(
(
this.shadowRoot.querySelector ('#image .right').innerHTML = imageCount;
(
(
(
("#total .right').innerHTML = totalCount;

updateViewOnStoryElementFocus (storyElement) {
const generalFieldCount = storyElement.model.fields.filter (field =>
field.isVisible && !field.isSettings).length;
const settingsFieldCount = storyElement.model.fields.filter (field =>
field.isSettings) .length;
const stringFieldValues = storyElement.model.fields
.filter(field => field.type === 'string')
.map (field => storyElement.values[field.name])
.filter (value => !!value);

value.length, 0);

Copyright © 2015-2023 Stibo DX A/S

'#headline .right').innerHTML = headlineCount;

const charsCount = stringFieldValues.reduce ((result, value) => result +

'#paragraph .right').innerHTML = paragraphCount;
this.shadowRoot.querySelector ('#lead text .right').innerHTML = leadTextCount;

Page 96



CUE Tech Guide

this.shadowRoot.querySelector ('#id .right').innerHTML = storyElement.id;
this.shadowRoot.querySelector
this.shadowRoot.querySelector
this.shadowRoot.querySelector

("
("
("
("

#chars .right').innerHTML = charsCount;

updateViewOnSelectionChange (selection) {

const selectedText = selection.selectedText;
const charCount = selectedText.length;
const vowelCount = (selectedText.match(/[aeiou]l/gi) || '').length;

const wordCount = selectedText.trim().split(/\s+/).length
this.shadowRoot.querySelector ('#selChars .right').innerHTML = charCount;

this.shadowRoot.querySelector ('#selVowels .right').innerHTML = vowelCount;
this.shadowRoot.querySelector ('#selWords .right').innerHTML = wordCount;

fillStoryElementTitleAndBody () {

const storyElements = this.getStoryElements();
const textElements = storyElements
.filter (element => element.model.name === 'lead text'

|| element.model.name === 'headline'

)
textElements.forEach (storyElement => ({

const fieldName = storyElement.model.fields[0].name;
const fieldValue = storyElement.values[fieldName];
if (fieldvalue && (fieldValue.search(titleShortcut) > -1 ||
fieldvValue.search (bodyShortcut) > -1 )) {
const newValue = fieldValue.replace(titleShortcut, dummyTitle)

.replace (bodyShortcut, dummyBody) ;
this.updateStoryElementValue (storyElement.id, newValue) ;

getStoryElements () {
return this.storyline.elements
.map (elementId => this.storyline.storyElements.get (elementId))

customElements.define ('storyline-stat', StorylineStatPanel);

class StorylineStatIcon extends cue.core.webcomponents.MetadataPanelCUEElement
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>

tag */

.icon:before {

font: 1l6px 'cf';
font-style: normal;
font-weight: normal;
color: #444444;
content: 'St';

Copyright © 2015-2023 Stibo DX A/S

#general .right').innerHTML = generalFieldCount;
#settings .right').innerHTML = settingsFieldCount;

:host { margin: 0; padding: 2px; display: block; } /* Styles the web component icon

Page 97



CUE Tech Guide

-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
}

.icon.active:before {
color: #09ab00;

}
</style>

<span class="icon"></span>
;

}

connectedCallback() {
this.activeStateChanged (this.active);
this.addActiveWatcher (active => {
this.activeStateChanged (active) ;

1) ;

activeStateChanged(active) {
const icon = this.shadowRoot.querySelector('.icon');
if (active) {
S (icon) .addClass ('active');

}
else {
S (icon) .removeClass ('active');

}

customElements.define ('storyline-stat-icon', StorylineStatIcon);

4.1.2.9 StoryFolderEditorMetadataPanel

cue.core.webcomponents.StorylineEditorMetadataPanel can be used to add a custom
metadata panel section to CUE story folder editors.

It is defined as follows:
export abstract class StoryFolderEditorMetadataPanel extends CUEElement {
// Returns the storyfolder being edited
public abstract getStoryFolder: () => webcomponent.Nullable<
webcomponent.StoryFolder

>

// Function to be called whenever the story folder content changes in the editor
public abstract addStoryFolderWatcher (watcher: () => void): () => void;

41.29.1 StoryFolderEditorMetadataPanel Configuration

editors:
metadata:
- name: "story-folder-info"
directive: "story-folder-info"
cssClass: "story-folder-info"
title: "Story Folder Info" #translate
webComponent:

modulePath: "webcomponents/story-folder-info/story-folder-info.js"

Copyright © 2015-2023 Stibo DX A/S Page 98



CUE Tech Guide

icon: "story-folder-info-icon"
mimeTypes: [ "x-cci/storyfolder" ]
order: 735

4.1.29.2  StoryFolderEditorMetadataPanel Example

.StoryFolderEditorMetadataPanel
constructor () {
super () ;

this.shadowRoot.innerHTML =

<style>
thost {
margin: 0;
padding: 0;

width: 100%

}

hl {
color: #9c9c9c;
font-size: 24px;
font-weight: 300;

}

</style>

<hl>Story Folder Info</hl>
<div id="story-folder-info

connectedCallback() {
this.addStoryFolderWatcher ( ()
this.showStoryFolderInfo();

showStoryFolderInfo () {

wrapper.innerHTML = storyFolde
? "<div> Stories: ${storyFol

LI
’

}

class StoryFolderInfoIcon extends
.StoryFolderEditorMetadataPanel
constructor () {
super () ;

this.shadowRoot.innerHTML =
<style>
thost {
margin: 0;

Copyright © 2015-2023 Stibo DX A/S

class StoryFolderInfo extends cue.core.webcomponents

{

this.attachShadow ({ mode: 'open' });

-wrapper"></div>

=> this.showStoryFolderInfo());

const storyFolder = this.getStoryFolder();
const wrapper = this.shadowRoot.querySelector ('#story-folder-info-wrapper');

T
der.stories.length}</div>

<div> Assignments: ${storyFolder.assignments.length}</div>
<div> Assets: ${storyFolder.contents.length}</div>
<div> Packages: S${storyFolder.packages.length}</div>"

customElements.define ('story-folder-info', StoryFolderInfo);

cue.core.webcomponents

{

this.attachShadow ({ mode: 'open' });

Page 99



CUE Tech Guide

}

L1

display: block;

con:before {

font: 1l6px 'cf';
font-style: normal;
font-weight: normal;
color: #444444;
content: '\\e846';

-webkit-font-smoothing: antialiased;

-moz-osx-font-smoothing: grayscale;

}
.icon.active:before {
color: #09ab00;

}
</style>
<span class="icon"></span>

’

connectedCallback () {

this.activeStateChanged (this.active);

this.addActiveWatcher (active => {

this.activeStateChanged (active) ;

1) ;

activeStateChanged (active) {

const icon = this.shadowRoot.querySelector('.icon');

if (active) {
S (icon) .addClass ('active') ;
} else {

S (icon) .removeClass ('active');

}

customElements.define ('story-folder-info-icon',

41.2.10 CustomEditorPanel

StoryFolderInfoIcon);

cue.core.webcomponents.CustomEditorPanel can be used to add a custom editor panel

to a storyline editor. Its purpose is to allow specific storyline types to be extended with custom

functionality. You might, for example, extend a Facebook storyline type with a panel containing a
preview of the post being created. The panel is displayed to the right of the storyline editor itself,
between the editor and the metadata panel. Note that although CustomEditorPanel inherits from
TextEditorMetadataPanel, it can only be used together with storyline editors, not with classic

CUE editors.

It is defined as follows:

export abstract class CustomEditorPanel

extends TextEditorMetadataPanel

implements webcomponent.CustomEditor

Copyright © 2015-2023 Stibo DX A/S

Page 100



CUE Tech Guide

4.1.2.10.1 CustomEditorPanel Configuration

The following properties must be defined to configure an editor panel based on
CustomEditorPanel:

- name
The name of the web component, preceded by a hyphen (-). By convention it is usually the same
as the web component's tagName, but does not have to be.

modulePath
The URL of the web component

attributes
Any properties required by this web component

All the properties must be entered as a list item belonging to a customComponents property. They
must be indented correctly and the name property must be preceded by a hyphen (-) to indicate the
start of a new list item. The following example shows the required format:

customComponents
- name: "custom-preview"
modulePath: "webcomponents/preview/custom-preview.js"
attributes:
renderDelay: 2

The renderDelay attribute specified in the example above is a parameter required by the example
custom-preview web component (see section 4.1.2.10.2).

In order for a custom editor panel defined in this way to actually appear in CUE, you also need to add
aui:custom-editor element inside one or more storyline-template resources in the Content
Store. A custom editor panel is only displayed alongside a storyline editor if the edited storyline's
template contains a ui : custom-editor element. The ui : custom-editor element specifies which
custom editor panel is to be displayed, its minimum screen width requirement, and how much of the
storyline editor's width it is allowed to occupy. The ui : custom-editor element must appear as a
child of the storyline template's elements element:

<?xml version="1.0"?>
<storyline-template
xmlns="http://xmlns.escenic.com/2008/content-type"
xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
name="strict">
<elements>

<ui:custom-editor
webcomponent="custom-preview"
width="45%"
minresolution="960px" />

</elements>
</storyline-template>

For general information about storyline templates and how to edit them, see Storyline Templates. For
a detailed description of the ui : custom-editor element, see custom-editor.

Copyright © 2015-2023 Stibo DX A/S Page 101


http://docs.escenic.com/ece-pub-design-guide/7.15/storyline_templates.html
http://docs.escenic.com/ece-resource-ref/7.15/ih_custom_editor.html

CUE Tech Guide

4.1.2.10.2 CustomEditorPanel Example

The following example provides a "live preview" window for storyline editors, that updates as users
edit the storyline. The renderDelay attribute set in the configuration file specifies how long (in

seconds) to wait after the user stops typing before rendering a new preview in the window.

class CustomPreviewPanel extends cue.core.webcomponents.CustomEditorPanel {
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>
.preview-container {
width: 100%;
height: 100%;
}
</style>

<div class="preview-container" id="preview"></div>
this.frontBuffer = this.createBuffer();
this.backBuffer = this.createBuffer();

const previewDiv = this.shadowRoot.querySelector ('#preview');

previewDiv.append(this.frontBuffer, this.backBuffer);

async connectedCallback() {
let typingDebounce; // Debounce timer for content updates

let renderTimer; // Delay from typing debounce fires till we swap buffers

let renderDelay = this.hasAttribute ('renderDelay')
? this.getAttribute ('renderDelay') * 1000
1000;

this.addContentWatcher (async () => {
window.clearTimeout (typingDebounce) ;
window.clearTimeout (renderTimer) ;

typingDebounce = window.setTimeout (async () => {
renderTimer = window.setTimeout (() => this.swapBuffers(), renderDelay);
this.backBuffer.src = await this.getPreviewURL() ;
}, 1000);
1)
window.setTimeout (() => this.swapBuffers (), renderDelay);
this.backBuffer.src = await this.getPreviewURL() ;
}
swapBuffers () {

const tmp = this.backBuffer;
this.backBuffer = this.frontBuffer;
this.frontBuffer = tmp;

this.backBuffer.style.display = 'none';
this.frontBuffer.style.display = 'block';

}

createBuffer () {
const buffer = document.createElement ('iframe');
buffer.style.width = '100%"';
buffer.style.height = '100%';

Copyright © 2015-2023 Stibo DX A/S

Page 102



CUE Tech Guide

buffer.style.position = 'absolute';
buffer.style.top = '0Opx"';
buffer.style.left = 'Opx';
buffer.style.border = 'lpx solid #e6eb6eb6';
buffer.style.display = 'none';

return buffer;

}

customElements.define ('custom-preview', CustomPreviewPanel) ;

41.2.11 ContentSummaryEditor

cue.core.webcomponents.ContentSummaryEditor can be used to extend the functionality of
the content cards used to represent content items in the following contexts:

+ The metadata panel in a content editor, when a relation is expanded

« A section page metadata panel, when a teaser is selected

It is defined as follows:
export abstract class ContentSummaryEditor extends CUEElement {

// Returns the content summary data as displayed
public item: webcomponent.Content;

// Returns the entire content summary
public content: webcomponent.Content;

// Returns the content editor tab URL for the content item represented by the
summary.
public link: string;

4.1.2.11.1 ContentSummaryEditor Configuration

customComponents:
- name: "my-additional-editor"
modulePath: "webcomponents/additional-editor/my-additional-editor.js"

4.1.2.11.2 ContentSummaryEditor Example

class MyAdditionalEditor extends cue.core.webcomponents.ContentSummaryEditor {
constructor () {
super () ;
this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>
thost {
margin: 0;
padding: 0;
width: 100%;
display: block;
}
.wc-additional-editor-container {
padding: 10px;
height: 100px;
overflow: hidden;

Copyright © 2015-2023 Stibo DX A/S Page 103



CUE Tech Guide

.wc-additional-editor-group {
with: 100%;
height: auto;
margin-bottom: 10px;
font-family: "Hind", Helvetica Neue, Helvetica, Arial, sans-serif;
color: #797878;
font-size: 16px;
}
.wc—additional-editor-item-name {
display: block;
font-size: 12px;
}
.wc-additional-editor-item-content {
display: block;
font-size: 1l6px;

a.wc-additional-editor-link:1ink, a.wc-additional-editor-link:visited
text-decoration: none;
color: #457dce;

a.wc-additional-editor-link:hover {
text-decoration: underline;
}
</style>
<div class="wc-additional-editor-container">
<div class="wc-additional-editor-group">
<span class="wc-additional-editor-item-name">Title:</span>
<span class="wc-additional-editor-item-content"
id="wc-additional-editor-title">This is some title here</span>
</div>
<div class="wc-additional-editor-group">
<span class="wc-additional-editor-item-name">Type:</span>

type">bipolar</span>
</div>
<div class="wc-additional-editor-group">
<span class="wc-additional-editor-item-content">
<a href="" target=" blank" class="wc-additional-editor-link"
id="wc-additional-editor-editor-1ink">Open content</a></span>
</div>
</div>

connectedCallback () {

const title = this.item.values.title;

this.shadowRoot.querySelector (
'#wc-additional-editor-title'

) .innerHTML = title;

const type = this.content.mimeType;

this.shadowRoot.querySelector (
'#wc-additional-editor-type'

) .innerHTML = type;

const editorLink = this.link;

this.shadowRoot.querySelector (
'"#wc-additional-editor-editor-link'

) .href = editorLink;

Copyright © 2015-2023 Stibo DX A/S

{

<span class="wc-additional-editor-item-content" id="wc-additional-editor-

Page 104



CUE Tech Guide

customElements.define ('my-additional-editor', MyAdditionalEditor);

41.2.12 CustomFieldEditor
cue.core.webcomponents.CustomFieldEditor can be used to create a custom field editor.
It is defined as follows:

export abstract class CustomFieldEditor extends CUEElement
implements webcomponent.CustomFieldEditor ({

// Field MIME type as defined in the content type
public mimeType: string;

// Sets the value of the specified field (that is a different field from this one)
public abstract setFieldValue (fieldName: string, value: any): void;

// Function to be called whenever the value of this field changes
public abstract addvValueWatcher (watcher: (value: any) => void): () => void;

// Sets the value of this field
public abstract setValue (value: any): void;

// The value of this field
public abstract getValue(): any;

// Function to be called whenever the read-only status of this field changes
public abstract addReadonlyWatcher (watcher: (value: boolean) => void): () => void;

// The read-only status of this field
public abstract isReadOnly(): boolean;

// Returns the content being edited in the editor
public abstract getContent (): Promise<webcomponent.Content>;

// Returns the id of the content item being edited in the editor
getArticleId(): Nullable<string>;

// Returns the URI of the content item being edited in the editor
getArticleUri () : Nullable<string>;

// Returns the content type of the content item being edited in the editor
getContentType () : Nullable<string>;

// Returns the state of the content item being edited in the editor
getState () : Nullable<webcomponent.ContentState>;

// Returns the published date of the content item being edited in the editor
getPublishedDate () : Nullable<moment.Date>;

4.1.2.12.1 CustomFieldEditor Configuration

The following properties must be defined to configure a custom field editor based on
CustomFieldEditor:

Copyright © 2015-2023 Stibo DX A/S Page 105



CUE Tech Guide

- name
The name of the web component. The name you specify must contain a hyphen. Remember also
that the id property name must be preceded by a hyphen (-).

tagName
The name of the custom HTML element that is used to encapsulate the component: the name
used in the document . registerElement () call in the component's script element.

modulePath
The URI of the component.

All the properties must be entered as a list item belonging to a customComponents property. They
must be indented correctly and the id property must be preceded by a hyphen (-) to indicate the start
of a new list item. The following example shows the required format:

customComponents:
- name: "custom-slider"
tagName: "my-slider"
modulePath: "http://www.example.com/webcomponents/my-slider.js"

4.1.2.12.2 Custom Field Editor Invocation

To use a custom field editor for a particular field, you need to add a ui : editor to the field's definition
in the content-type resource. The ui : editor element has two attributes:

type
This must always be set to web-component.

name
This must be set to the name of the component as defined in the field editor configuration file.

To use the slider field editor defined in section 4.1.2.12.1, for example, you would need to add the
following ui-editor element to your field definition:

<field type="number" name="percentage">
<ui:label>Percentage</ui:label>
<ui:editor type="web-component" name="custom-slider"/>
</field>

4.1.2.12.3 CustomFieldEditor Example

class NumberSlider extends cue.core.webcomponents.CustomFieldEditor {
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML = °

<style>

thost {

margin: 0;

padding: Opx;

width: 100%;

display: block;

}

.spacer {
padding: 10px;
height: 30px;

Copyright © 2015-2023 Stibo DX A/S Page 106



CUE Tech Guide

overflow: hidden;

}

#thefield {

width: 100%;

}

</style>

<div class="spacer">

<input id="thefield" type="range" max="100" min="0" value="0"><br/>
</div>

}

connectedCallback() {
this.updateViewValue () ;
this.updateReadOnly () ;
this.shadowRoot.querySelector ('input') .addEventListener ('input', () =>
this.updateModelVvalue()) ;
this.addValueWatcher ((value) => {
this.updateViewValue () ;

1) ;
this.addReadonlyWatcher ( (value) => ({
this.updateReadOnly () ;

1)

updateViewValue () {
this.shadowRoot.querySelector ('input') .value = this.getValue();

}i

updateModelValue () {
this.setValue (parselInt (this.shadowRoot.querySelector ('input') .value));

}i

updateReadOnly () {
this.shadowRoot.querySelector ('input').readOnly = this.isReadOnly () ;

}i
}

customElements.define ('number-slider', NumberSlider);

4.1.2.13 CustomStoryElementEditor

cue.core.webcomponents.CustomStoryElementEditor can be used to create a custom field
editor for a field belonging to a story element.

It is defined as follows:
export abstract class CustomStoryElementEditor extends CustomFieldEditor
/*** from CustomFieldEditor interface ***/

// Field MIME type as defined in the content type
public mimeType: string;

// Sets the value of a Content field outside the storyline
public abstract setFieldValue (fieldName: string, value: any): void;

// Function to be called whenever the value of this field changes
public abstract addvValueWatcher (watcher: (value: any) => void): () => void;

Copyright © 2015-2023 Stibo DX A/S Page 107



CUE Tech Guide

// Sets the value of this field
public abstract setValue(value: any): void;

// Returns the value of this field
public abstract getValue(): any;

// Function to be called whenever the read-only status of the story element changes
public abstract addReadonlyWatcher (watcher: (value: boolean) => void): () => void;

// The read-only status of the story element
public abstract isReadOnly(): boolean;

// Returns the complete story content being edited in the editor
public abstract getContent(): Promise<webcomponent.Content>;

// Function to be called whenever the content changes
public abstract addContentWatcher (watcher: (content: webcomponent.Content) => void):
() => void;

// Returns the id of the content item being edited in the editor
getArticleId(): Nullable<string>;

// Returns the URI of the content item being edited in the editor
getArticleUri () : Nullable<string>;

// Returns the content type of the content item being edited in the editor
getContentType () : Nullable<string>;

// Returns the state of the content item being edited in the editor
getState(): Nullable<webcomponent.ContentState>;

// Returns the published date of the content item being edited in the editor
getPublishedDate () : Nullable<moment.Date>;

/*** CustomStoryElementEditor interface ***/

// Returns the storyline being edited in the editor
public abstract getStoryline(): Promise<webcomponent.Storyline>;

// Returns story element. Undefined storyElementId means the story element where the
custom field resides

public abstract getStoryElement (storyElementId?: string):
Promise<webcomponent.StoryElement>;

// Returns value of field inside story element. Undefined storyElementId means the
story element where the custom field resides

public abstract getStoryElementFieldValue (fieldName: string, storyElementId?:
string): any;

// Sets value of field inside story element. Undefined storyElementId means the
story element where the custom field resides

public abstract setStoryElementFieldValue (fieldName: string, value: any,
storyElementId?: string): void;

// Function to be called whenever the storyline changes
public abstract addStorylineWatcher (watcher: (storyline: webcomponent.Storyline) =>
void): () => void;

Copyright © 2015-2023 Stibo DX A/S Page 108



CUE Tech Guide

// Function to be called whenever the story element changes. Undefined
storyElementId means the story element where the custom field resides
public abstract addStoryElementWatcher (watcher: (storyElement:
webcomponent.StoryElement) => void): () => void;

// Function to be called whenever the storylines text selection changes
public abstract addTextSelectionWatcher (watcher: (selection:
webcomponent.StorylineTextSelection) => void): () => void;

// Returns current text selection
public abstract getTextSelection(): webcomponent.StorylineTextSelection | undefined;
}

4.1.2.13.1 CustomStoryElementEditor Configuration

The following properties must be defined to configure a custom field editor based on
CustomStoryElementEditor:

- name
The name of the web component. The name you specify must contain a hyphen. Remember also
that the id property name must be preceded by a hyphen (-).

tagName
The name of the custom HTML element that is used to encapsulate the component: the name
used in the document . registerElement () call in the component's script element.

modulePath
The URI of the component.

All the properties must be entered as a list item belonging to a customComponents property. They
must be indented correctly and the id property must be preceded by a hyphen (-) to indicate the start
of a new list item. The following example shows the required format:

customComponents:
- name: "custom-slider"
tagName: "my-slider"
modulePath: "http://www.example.com/webcomponents/my-slider.js"

4.1.2.13.2 CustomsStoryElementEditor Invocation

To use a custom field editor for a particular story element field, you need to add a ui : editor to the
field's definition in the storyline definition. The ui : editor element has two attributes:

type
This must always be set to web-component.

name
This must be set to the name of the component as defined in the field editor configuration file.

To use the slider field editor defined in section 4.1.2.13.1, for example, you would need to add the
following ui-editor element to your field definition:

<field type="number" name="percentage">
<ui:label>Percentage</ui:label>
<ui:editor type="web-component" name="custom-slider"/>
</field>

Copyright © 2015-2023 Stibo DX A/S Page 109



CUE Tech Guide

4.1.2.13.3 CustomStoryElementEditor Example

class MySlider extends cue.core.webcomponents.CustomStoryElementEditor {
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>
thost {
margin: 0;
padding: Opx;
width: 100%;
display: block;

.spacer {
padding: 10px;
height: 30px;
overflow: hidden;

fthefield {
width: 100%;
}
</style>
<div class="spacer">
<input id="thefield" type="range" max="100" min="0" value="0"><br/>
</div>

connectedCallback () {
this.updateViewValue () ;
this.updateReadOnly () ;
this.shadowRoot.querySelector ('input') .addEventListener ('input', () =>
this.updateModelValue());
this.addValueWatcher ((value) => {
this.updatevViewValue();
1) 7
this.addReadonlyWatcher ( (value) => {
this.updateReadOnly () ;
1)

updateViewValue () {
this.shadowRoot.querySelector ('input') .value = this.getValue();

}i

updateModelValue () {
this.setValue (parselnt (this.shadowRoot.querySelector ('input') .value));

}i

updateReadOnly () {
this.shadowRoot.querySelector ("input') .readOnly = this.isReadOnly () ;
}i
}

customElements.define ('custom-slider', MySlider);

Copyright © 2015-2023 Stibo DX A/S

Page 110



CUE Tech Guide

4.1.2.14 Sending Notifications from Web Components

You can send notifications from your web components. These notifications will appear in CUE's
notification center in exactly the same way as CUE's own notifications. Notifications are managed
by the notification object, which is exposed as a property of all CUE web component objects. It
provides two methods - one for showing notifications, and one for hiding them.

interface cue.core.webcomponents.Notification {
show (title: string, body: string): Promise<string>;
hide (notificationId: string): Promise<boolean>;

4.1.2.14.1 Web Component Notification Example

This example shows part of a web component in which a drop handler listens for drop events in a
particular HTML element and sends notifications each time one occurs.

let notificationId;
connectedCallback () {
this.shadowRoot.querySelector ('div') .addEventListener ('dragover', event => {
event.preventDefault () ;
event.stopPropagation () ;
}) i
this.shadowRoot.querySelector ('div') .addEventListener ('drop', event =>
this.dropHandler (event));
}

dropHandler (event) {
event.preventDefault () ;

const urilist = event.dataTransfer.getData ('text/uri-list"');
const uri = event.dataTransfer.getData ('x-cue/uri');
this.shadowRoot.querySelector ('#uri-list .right').innerHTML = urilList;
this.shadowRoot.querySelector ('#uri .right').innerHTML = uri;
const notification = this.notification;
if (notification) {
if (this.notificationId) {
notification.hide(this.notificationId);
}
notification
.show ('Drop Data', "URI: ${uri}. URI List: ${uriList}.")
.then(notificationId => (this.notificationId = notificationId));

4.1.2.15 Adding Dialogs to Web Components

cue.core.webcomponents.CUEElement has a dialog property that provides a range of methods
for adding dialogs to your web components:

interface Dialog {
showOneButton (
message: string,
title: string,

buttonLabel: string = 'OK'
) : Promise<void>;
showTwoButton (

message: string,

Copyright © 2015-2023 Stibo DX A/S Page 111



CUE Tech Guide

title: string,

okLabel: string = 'OK',

cancellabel: string = 'Cancel',

setOkAsDefault: boolean = true
) : Promise<void>;

showError (message: string): Promise<void>;
showWarning (message: string): Promise<void>;
showVdf (
vdfPayload: string,
title: string,
okLabel: string = 'OK',
cancellabel: string = 'Cancel',
setOkAsDefault: boolean = true
) : Promise<Content>;

The Dialog methods can therefore be called from any of the CUE web components as follows:

this.dialog. function name(_params)

For example:

this.dialog.showOneButton ("Do you want to continue?", "Continue Dialog")

The methods are described in more detail in the following sections.

4.1.2.15.1 showOneButton

showOneButton (
message: string,
title: string,
buttonLabel?: string = 'OK'
) : Promise<void>;

Displays a simple one-button dialog. It has the following parameters:

message
The message to display in the dialog.

title
The dialog title.

buttonLabel

The label to display on the dialog's only button ("OK" by default).

4.1.2.15.2 showTwoButton

showTwoButton (
message: string,
title: string,

okLabel: string 'OK',
cancellabel: string = 'Cancel',
setOkAsDefault: boolean = true

) : Promise<void>;

Displays a simple two-button dialog. It has the following parameters:

Copyright © 2015-2023 Stibo DX A/S

Page 112



CUE Tech Guide

message
The message to display in the dialog.

title
The dialog title.

okLabel
The label to display on the dialog's button ("OK" by default).

cancellabel
The label to display on the dialog's button ("Cancel" by default).

setOkAsDefault
If true (the default) then the button in the dialog is set as the default choice.

4.1.2.15.3 showError
showError (message: string): Promise<void>;

Displays a simple dialog containing an error message and a button. It has one parameter:
message

The error message to display in the dialog.

4.1.2.15.4 showWarning

showWarning (message: string): Promise<void>;

Displays a simple dialog containing a warning message and a button. It has one parameter:

message
The warning message to display in the dialog.

4.1.2.15.5 ShowVdf

showVdf (
vdfPayload: string,
title: string,

okLabel: string = 'OK',

cancellabel: string = 'Cancel',

setOkAsDefault: boolean = true
) : Promise<Content>;

Displays a dialog containing a title, custom contents defined in a VDF file and two buttons with the
default labels and . The VDF file is submitted via the vdfPayload argument.

Displays a two-button dialog with custom content. It has the following parameters:

vdfPayload

A VDF document defining the content to display in the dialog. For further information, see
section 4.1.2.15.6.

title
The dialog title.

okLabel
The label to display on the dialog's button ("OK" by default).

Copyright © 2015-2023 Stibo DX A/S Page 113



CUE Tech Guide

cancellabel
The label to display on the dialog's button ("Cancel" by default).

setOkAsDefault
If true (the default) then the button in the dialog is set as the default choice.

4.1.2.15.6 Defining Custom Dialogs

The ShowVdf () method must be supplied with a VDF payload document defining the content of the
dialog to be displayed. VDF is an XML format used to represent content items - for details, see the

Content Engine Integration Guide. Here, VDF is used define a sequence of field values to be displayed
in the dialog. For example:

<vdf:payload
xmlns:vdf="http://www.vizrt.com/types"
model="webcomponents/simple-dialog/vdfEditorModel .xml">
<vdf:field name="title">
<vdf:value>This is a title</vdf:value>
</vdf:field>
<vdf:field name="body">
<vdf:value>
<div xmlns="http://www.w3.0rg/1999/xhtml">
<p>This is some body text.</p>
</div>
</vdf:value>
</vdf:field>
</vdf:payload>

A VDF payload document only contains field values, it does not contain any metadata about the fields.
You must therefore always create a VDF model document as well, which is referenced from the payload
document. The example shown above references a model called vdfEdi torModel . xml, which looks
like this:

<vdf:model xmlns:vdf="http://www.vizrt.com/types"
xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
xmlns:atom="http://www.w3.0rg/2005/Atom">
<vdf:schema>
<vdf:fielddef name="title" label="Title" mediatype="text/plain" xsdtype="string">
<ui:label>Title</ui:label>
<ui:description>The title of the article</ui:description>
</vdf:fielddef>
<vdf:fielddef name="body" label="Body text" mediatype="application/xhtml+xml"
xsdtype="string">
<ui:label>Body text</ui:label>
<ui:description>The body text of the article.</ui:description>
<ui:style>body { min-height: 200px; }</ui:style>
</vdf:fielddef>
</vdf:schema>
</vdf:model>

Together, the VDF payload and model provide sufficient information for ShowVd£ () to construct the
dialog.

You can use ShowVdf () to create dialogs containing any of the field types supported by CUE.

Copyright © 2015-2023 Stibo DX A/S Page 114


http://docs.escenic.com/ece-integration-guide/7.15/

CUE Tech Guide

4.1.2.15.7 Dialog Example

The following example web component creates a metadata panel section containing a series of forms
that you can use to display demo dialogs. It has no practical function, it is simply a demonstration of
how the various dialog methods work, and what kind of dialogs they display. The web component is
created using the cue . core . webcomponents . StorylineEditorMetadataPanel class and is

configured as follows:

customComponents:
- name: "simple-dialog"
tagName: "simple-dialog"

modulePath: "webcomponents/simple-dialog/simple-dialog.js"

attributes:
title: "Simple Dialog"
icon: "simple-dialog-icon"

Here is the web component code:

class SimpleDialog extends cue.core.webcomponents.StorylineEditorMetadataPanel ({

constructor () {
super () ;

this.attachShadow ({ mode: 'open'

this.shadowRoot.innerHTML =
<style>
thost { margin:0; padding:
hl, h2, h3, h4 {
color: #9c9c9c;

/* Panel specific inputs */
.text-field {
height: 32px;
vertical-align: middle;

100%; display:block; 1}

font-family: 'Hind', Helvetica Neue, Helvetica, Arial, Sans-serif;

font-weight: lighter;
font-size: 18px;
line-height: 1.3;
color: #444444;
cursor: pointer;
border-radius: 3px;
width: 100%;

.text-area {
height: 128px;

font-family: 'Hind', Helvetica Neue, Helvetica, Arial, Sans-serif;

font-weight: lighter;
font-size: 18px;
color: #444444;
cursor: pointer;
border-radius: 3px;
width: 100%;

button,

input [type=submit],
input [type=cancel],
input [type=button] {

Copyright © 2015-2023 Stibo DX A/S

Page 115



CUE Tech Guide

height: 32px;

border: none;
background: #d3d3d3;
vertical-align: middle;

font-weight: lighter;
font-size: 18px;
line-height: 1.3;
color: #444444;
padding: 2px 10px 0 10px;
cursor: pointer;
border-radius: 3px;
width: 100%;

}

button:hover {
background: #e5ebe5;

}

.group {
padding: 20px;

}

.spacer {
padding:10px

}

p {
margin: 0;

}

</style>

<div>
<hl>Simple Dialog API</hl>
<h2>A Web Component</h2>

</div>

<hr>

<div class="group">

<p></p>
<div class="spacer"></div>
<p>Title</p>
Dialog">
<p>Message</p>
textarea>

<p>Button Label</p>

value="0k">
<div class="spacer"></div>

</div>
<hr>
<div class="group">

<div class="spacer"></div>
<p>Title</p>

Cancel dialog">
<p>Message</p>

Copyright © 2015-2023 Stibo DX A/S

font-family: 'Hind', Helvetica Neue,

<h3>Simple Customizable Dialogs</h3>

<h3>Customizable Reactive Dialogs</h3>
<p>The dialog API exposes customizable
options. The answer is a Promise that is resolved or rejected.</p>

<input class ="text-field" type="text"

Helvetica, Arial, Sans-serif;

<input class ="text-field" type="text" id="simple-title" value="Simple

<textarea class="text-area" id="simple-message" rows="5" >description</

<input class ="text-field" type="text" id="simple-button-label"

<button id="simple-button">Show One Button Dialog</button>

dialogs with positve and negative

id="two-button-title" value="OK or

Page 116



CUE Tech Guide

<textarea class="text-area" id="two-button-message" rows="5" >Using this
dialog one can promt the user for a positive or negative answer. The answer can be
used for further action.</textarea>

<p>Cancel label</p>

<input class ="text-field" type="text" id="two-button-cancel-label"
value="Cancel">

<p>0k Label</p>

<input class ="text-field" type="text" id="two-button-ok-label"
value="0k">

<label for="two-button-use-default-buttons"> Use default buttons</label>

<input type="checkbox" id="two-button-use-default-buttons" checked>

<div class="spacer"></div>

<div class="spacer"></div>

<button id="two-button-button">Show Two Button Dialog</button>

<div class="spacer"></div>

<p>output:</p>
<input disabled class ="text-field" type="text" id="two-button-output"
value="">
</div>
<hr>
<div class="group">

<h3>Input validation using Dialogs</h3>

<p>The Dialos API can be used to validate input from the user.</p>
<div class="spacer"></div>

<p>Which City was the European Capital of Culture 2017?</p>

<input class ="text-field" type="text" id="answer" value="">

<div class="spacer"></div>

<button id="quiz-button">Answer question</button>

<div class="spacer"></div>

<p>Insert a number between 5 and 10</p>

<input class ="text-field" type="number" id="numberField" value="">
<div class="spacer"></div>

<button type="submit"id="numValidation">Submit</button>

<div class="spacer"></div>

</div>
<hr>
<div class="group">
<h3>Alert Dialogs</h3>
<p>The dialog API exposes two levels of alert dialogs; Warning and Error.
A description of the problem can be passed to the dialog.</p>
<div class="spacer"></div>
<p>Type alert message:</p>
<textarea class="text-area" id="error-msg" rows="5" >A error dialog can be
used to notify the user, who is about to do something is not permitted</textarea>
<div class="spacer"></div>
<button id="openWarningDialog" class="buttons">Warning Dialog</button>
<div class="spacer"></div>
<button id="openErrorDialog" class="buttons">Error Dialog</button>
<div class="spacer"></div>
</div>

<hr>
<h2>Advanced Dialog API</h2>
<p>The advanced API is based on VDF models.</p>
<div class="group">
<h3>A dialog editor</h3>

Copyright © 2015-2023 Stibo DX A/S Page 117



CUE Tech Guide

<p>Values can be passed to the dialog</p>

<p>Top</p>

<input class="text-field" type="text" id="editor-top" value="top">

<p>Titel</p>

<input class="text-field" type="text" id="editor-title" value="title">

<p>Cancel label</p>

<input class ="text-field" type="text" id="editor-cancel-label"
value="Cancel">

<p>0k Label</p>

<input class ="text-field" type="text" id="editor-ok-label" wvalue="0Ok">

<label for="editor-use-default-buttons"> Use default buttons</label>

<input type="checkbox" id="editor-use-default-buttons" checked>

<div class="spacer"></div>

<button id="editor">Editor Dialog</button>

<div class="spacer"></div>

<p>body output:</p>

<span class="text-field" type="text" id="editor-output"></span>

</div>

’

connectedCallback () {
this.shadowRoot
.getElementById('simple-button')
.addEventListener ('click', () => {
// Get the dialog configurations
const top = this.shadowRoot.querySelector ('#simple-title') .value;
const description = this.shadowRoot.querySelector ('#simple-message')

.value;

const buttonLabel = this.shadowRoot.querySelector (
'#simple-button-label’

) .value

? this.shadowRoot.querySelector ('#simple-button-label') .value
undefined;
// Call the dialog api
this.dialog.showOneButton (description, top, buttonLabel) ;
1)

this.shadowRoot
.getElementById('two-button-button')
.addEventListener ('click', () => {
// Get the dialog configurations
const top = this.shadowRoot.querySelector ('#two-button-title') .value;
const description = this.shadowRoot.querySelector ('#two-button-message')
.value;
const okButtonLabel = this.shadowRoot.querySelector (
'"input [id="two-button-ok-label"]"
) .value
? this.shadowRoot.querySelector ('input[id="two-button-ok-label"]")
.value
undefined;
const cancelButtonLabel = this.shadowRoot.querySelector (
'"input[id="two-button-cancel-label"]"
) .value
? this.shadowRoot.querySelector ('input[id="two-button-cancel-label"]")

.value
undefined;
const useDefaultButtons = this.shadowRoot.querySelector (
'#two-button-use-default-buttons'
) .checked;

Copyright © 2015-2023 Stibo DX A/S Page 118



CUE Tech Guide

// Call the dialog api
this.dialog
.showTwoButton (
description,
top,
okButtonLabel,
cancelButtonLabel,
useDefaultButtons
)
.then(
// if promise is resolved
0 =>{
this.shadowRoot.querySelector (
'input [id="two-button-output"]"'
) .value = okButtonLabel ? okButtonLabel : 'OK';
b
//1if promise is rejected
() => {
this.shadowRoot.querySelector (
'input [id="two-button-output"]"'
) .value = cancelButtonlLabel ? cancelButtonLabel : 'Cancel';
}
)i
}) i

this.shadowRoot
.getElementById('quiz-button')
.addEventListener ('click', () => {
const answer = this.shadowRoot.querySelector ('input[id="answer"]")

.value;
try {
const possibleAnswers = ['aarhus', 'arhus'];
let correct = false;
possibleAnswers.forEach (ans => {
if (answer.toLowerCase () .localeCompare (ans) === (0) correct = true;

}) i

if (!correct) {
throw Error (
"No "' +
answer +
rer 4
' was not the European Capital of Culture 2017'
)i
}
this.dialog.showOneButton (
'Yes, it is correct that the European Capital of Culture 2017 is "Arhus"',
'Correct',
'Yaay',
true
)i
} catch (error) {
this.dialog.showOneButton (error.message, 'Incorrect', 'Oops', true);

1)

this.shadowRoot
.getElementById('numValidation')
.addEventListener ('click', () => {

Copyright © 2015-2023 Stibo DX A/S Page 119



CUE Tech Guide

let x = this.shadowRoot.querySelector ('input[id="numberField"]"') .value;
try |
if (x == '') throw new Error('field is empty');

if (isNaN(x)) throw new Error ('input is not a number');
x = Number (x) ;
if (x < 5) throw new Error ('input is too low');
if (x > 10) throw new Error('input is too high');
this.dialog.showOneButton (
'Yes, number is between 5 an 10',
'Good Job',
'Thanks',
true
)i
} catch (error) {
this.dialog.showOneButton (
error.message,
'Invalid Input',
"I'll try again",
'Please try again'
)
}
}) i

this.shadowRoot
.getElementById ('openWarningDialog')
.addEventListener ('click', () => {
const description = this.shadowRoot.querySelector ('#error-msg') .value;
this.dialog.showWarning (description);

)i

this.shadowRoot
.getElementById('openErrorDialog')
.addEventListener ('click', () => {
const description = this.shadowRoot.querySelector ('#error-msg') .value;
this.dialog.showError (description);
1)

this.shadowRoot.getElementById('editor') .addEventListener ('click', () => {
const top = this.shadowRoot.querySelector ('#editor-top') .value;
const title = this.shadowRoot.querySelector ('#editor-title') .value;

const okButtonLabel = this.shadowRoot.querySelector (
'input[id="editor-ok-label"]"

) .value
? this.shadowRoot.querySelector ('input[id="editor-ok-label"]"') .value
undefined;
const cancelButtonLabel = this.shadowRoot.querySelector (
'input[id="editor-cancel-label"]"'
) .value
? this.shadowRoot.querySelector ('input[id="editor-cancel-label”]') .value
undefined;
const useDefaultButtons = this.shadowRoot.querySelector (
'#editor-use-default-buttons'
) .checked;

// Call the dialog api
this.dialog
.showVdf (

<vdf:payload xmlns:vdf="http://www.vizrt.com/types" model="webcomponents/
simple-dialog/vdfEditorModel.xml">
<vdf:field name="title">

Copyright © 2015-2023 Stibo DX A/S Page 120



CUE Tech Guide

<vdf:value>" +
title +
‘</vdf:value>
</vdf:field>
<vdf:field name="body">
<vdf:value>
<div xmlns="http://www.w3.0rg/1999/xhtml">
<p>this is body</p>
</div>
</vdf:value>
</vdf:field>
</vdf:payload>",
top,
okButtonLabel,
cancelButtonLabel,
useDefaultButtons
)
.then (
// if promise is resolved
res => {
this.shadowRoot.querySelector ('#editor-output') .innerHTML =
res.values.body;
}V
//if promise is rejected
res => {
console.log(res);

customElements.define ('simple-dialog', SimpleDialog);

class SimpleDialogIcon extends cue.core.webcomponents
.StorylineEditorMetadataPanel {
constructor () {
super () ;

this.attachShadow ({ mode: 'open' });
this.shadowRoot.innerHTML =
<style>
thost { margin: 0 Opx 0 Opx; width: 26px; display: inline; float:
margin-right: 18px; }
img { width: 20px; position: relative; }
</style>
<img class="icon">

this.activeIconPath = 'simple-dialog-icon.png';
this.inactiveIconPath = 'simple-dialog-icon.png';
}
connectedCallback () {
this.activeStateChanged (this.active);
this.addActiveWatcher (active => {
this.activeStateChanged (active) ;

1)

activeStateChanged (active) {
let img = this.shadowRoot.querySelector ('img.icon');

Copyright © 2015-2023 Stibo DX A/S

left;

Page 121



CUE Tech Guide

if (active) {
img.src = this.getAbsolutePath(this.activeIconPath) ;
} else {
img.src = this.getAbsolutePath(this.inactiveIconPath) ;
}
}
getAbsolutePath (path) {
const baseURI = import.meta.url;
return baseURI.substring (0, baseURI.lastIndexOf('/') + 1) + path;
}
}
customElements.define ('simple-dialog-icon', SimpleDialogIcon);

4.2 Enrichment Services

It is not feasible for CUE to meet every user's requirements out of the box — particularly when it comes
to integration with external systems. Such integrations are increasingly important as organizations
adapt their workflows to make use of popular online productivity tools, publish content to social media
and so on. When you publish a story in CUE, for example, you might also want to:

« Connect it to a Slack channel

» Create a card in Trello

« Push it to a Wordpress site

« Share it on one or more social media

« Send it to a legacy print system

CUE's enrichment services provide the means for you to satisfy such requirements for yourself, in a
surprisingly straightforward way.

An enrichment service is a simple HTTP service that has a defined workflow. When it receives a
request it recognizes from CUE, it responds in such a way as to guide CUE through the workflow,
providing CUE with explicit instructions on what it should do next. You can, for example, configure
CUE so that when the user clicks on to publish a story, the story is not immediately
published, but instead sent to an enrichment service you have created. The enrichment service can
then perform some check on the story — count the related links, for example — and return a response
to CUE. In this case the response could either be an "OK, continue", allowing the story to be published,
or an instruction to display a message saying "please add 3 related links" and cancel the publish
operation.

It is also possible to define much more complex interactions though: you can instruct CUE to display

a sequence of dialogs for the user to fill in, and use the supplied data to modify the content of the

submitted story. You can also trigger enrichment services in different ways, not only when the
button is pressed.

Here is an example workflow for publishing to social media that could be implemented using an
enrichment service:

1.  The user selects

Copyright © 2015-2023 Stibo DX A/S Page 122



CUE Tech Guide

2. CUE displays a dialog containing;:

e A text field (max 140 characters). It is pre-filled with either the story's title or the first
140 characters of its lead text field if available, but the user can edit it if required.

e A drop-down field, containing the names of supported social media.

o Three buttons:

. : publishes the story and then shares it on the selected medium, using the specified
title.
. : publishes the story without sharing it.
. : cancels both operations — the story is neither published nor shared.
If the user selects , then the enrichment service will make an appropriate HTTP request to a

back-end server that will take care of sharing a link to the published story, using the specified

Despite the fact that this additional functionality is implemented in an enrichment service completely
outside CUE, it appears to be fully integrated from the user's point of view: the dialog is constructed
and displayed by CUE and looks just like any other CUE dialog.

Enrichment services can be created to handle a number of different CUE structures, not only content
items. You can, for example, create enrichment services to handle section pages. Enrichment services
for the following items are, however, not supported at present:

« Lists

« CUE Live events

« CUE Print-related structures such as assignments and story folders
To create an enrichment service you need to:

« Configure CUE to access a service.

« Create the service. It must be an HTTP service that accepts specific kinds of requests from CUE,
and supplies specific kinds of response.

4.2.1 Configuring Enrichment Services in CUE

Configuring CUE to access an enrichment service is very straightforward — all you need to do is add a
few entries to the CUE configuration file, /etc/escenic/cue-web/config.yml. Open this file for
editing. If it does not already contain an enrichmentServices entry, then add one:

enrichmentServices:

Underneath this entry, you can add sub-entries for all the enrichment services you want to define. An
enrichment service configuration contains the following entries:

- name: service-name
href: http://host:port/service-url
title: service-title
triggers:
- name: trigger-name

where:

Copyright © 2015-2023 Stibo DX A/S Page 123



CUE Tech Guide

name
Is the name of the enrichment service. The name must be unique since CUE identifies the
services by their name. Any service definition with a duplicate name will be ignored.

href
Is the URI of the enrichment service. CUE will POST the current content item to this URI as an
Atom entry.

title
Is the title of the enrichment service. This title is displayed by CUE in headers and labels as
appropriate.

triggers
Is a list of one or more triggers defining when CUE is to POST the content item to the
enrichment service.

Optionally, a trigger may include a mimeTypes setting. This is a list of MIME type for which the
trigger is to fire. If you specify this property, then the trigger will only fire for the MIME types
specified in the list. The possible MIME types that may appear are:

x-ece/story CUE story-type content item
x-ece/picture CUE image content item
x-ece/video CUE video content item
x-ece/gallery CUE gallery content item

x-ece/new-content New CUE content that has not yet been saved

x-ece/section CUE section

x-ece/section-page | CUE section page

x-ece/* All kinds of CUE content

Some triggers may have properties that need to be specified, in which case the service
configuration will also include a properties value consisting of a sequence of one or more
property settings.

Here is an example trigger definition with both a mimeTypes setting and a list of properties.

triggers:
- name: trigger-name
mimeTypes: [mimetype-list]
properties:
property-name: property-value
property-name: property-value

See section 4.2.1.1 for further information.

4211 Enrichment Service Triggers

CUE supports a number of different triggers that make it possible to call enrichment services at
different points in the editing/publishing process. There is also a timer-based trigger that will call an
enrichment service repeatedly at a specified interval. The triggers vary slightly according to the type of
enrichment service.

Copyright © 2015-2023 Stibo DX A/S Page 124




CUE Tech Guide

In addition to the specific triggers described in the following sections, all triggers may have a timeout
property. This is a timeout specified in seconds, for example:

properties:
timeout: 10

If a triggered environment service does not respond within the timeout period, then the request is
abandoned. A timeout failure of this kind is handled by CUE in the same way as an error response
from the service (see section 4.2.1.5).

42.1.1.1 Content Item Triggers

The available triggers for content item enrichment services are:

before-save
Before saving, when the user presses the button. No properties required.

after-save
After saving, when the user presses the button. No properties required.

before-save-state-state-name
Before saving, when the user changes the state to state-name. If CUE has an Escenic Content
Engine back end, then state-name can only be the name of one of the CUE default states
(draft, submitted, approved, published or deleted). If CUE has a CUE Content Store
back end, then state-name can either be one of these standard names or the name of a custom
state defined in a custom workflow (see Custom Workflow Definitions). No properties required.
Not supported for section page enrichment services.

after-save-state-state-name
After saving, when the user changes the state to state-name. If CUE has an Escenic Content
Engine back end, then state-name can only be the name of one of the CUE default states
(draft, submitted, approved, published or deleted). If CUE has a CUE Content Store
back end, then state-name can either be one of these standard names or the name of a custom
state defined in a custom workflow (see Custom Workflow Definitions). No properties required.
Not supported for section page enrichment services.

editor-opened
A specified number of seconds after the content item is opened for editing. You must specify the
number of seconds to wait as a property: delay: n.

editor-recurring
At specified intervals for as long as the content item is open for editing. You must specify the
length of the interval (in seconds) as a property: interval: n.

on-click
When the user clicks a button in the content item. No properties required. For more information
about this kind of trigger see the last example in section 4.2.1.3.

421.1.2 Section Page Triggers

The available triggers for section page enrichment services are:

before-save
Before saving/publishing, when either:

» The section page is in the published state and the user presses the button.

« The section page is in the draft published state and the user presses the button.

Copyright © 2015-2023 Stibo DX A/S Page 125


http://docs.cuepublishing.com/ece-pub-design-guide/7.2/custom_workflow_definitions.html
http://docs.cuepublishing.com/ece-pub-design-guide/7.2/custom_workflow_definitions.html

CUE Tech Guide

after-save
After saving/publishing, when either:

« The section page is in the published state and the user presses the button.

« The section page is in the draft published state and the user presses the button.

before-save-state-save
Before saving, when the section page is in the published state and the user presses the
button. No properties required.

after-save-state-save
After saving, when the section page is in the published state and the user presses the
button. No properties required.

before-save-state-publish
Before saving, when the section page is in the draft published state and the user presses the
button. No properties required.

after-save-state-publish
After saving, when the section page is in the draft published state and the user presses the
button. No properties required.

editor-opened
A specified number of seconds after the section page is opened for editing. You must specify the
number of seconds to wait as a property: delay: n.

editor-recurring
At specified intervals for as long as the section page is open for editing. You must specify the
length of the interval (in seconds) as a property: interval: n.

42.1.2 Enrichment Service Authentication

In order for an enrichment service to be able to make Content Store web service calls on behalf of
the user, it must be able to authenticate itself. You can make this possible by defining authorized
endpoints.

Any enrichment service deployed on an authorized endpoint (or on the same origin as CUE) is given
the user's credentials. This enables the enrichment service to make requests to the web service on
the user's behalf and thereby perform tasks such as publishing related content items or creating new
content items.

To define authorized endpoints, add an authorizedEndpoints entry to your config.yml file. This
entry can contain an array of authorized endpoint URLs (each preceded by a hyphen). For example:

authorizedEndpoints:
- "http://my-enrichment-service.info:1234/"
- "http://some-other-enrichment-service.info:1234/"

4.2.1.3 Configuration Examples

Here are a few example enrichment service configurations:

« Check that a content item has at least three tags before it is saved:

- name: check-minimum-tag
href: http://host:port/checkMinimumTag
title: Minimum Tags
triggers:

Copyright © 2015-2023 Stibo DX A/S Page 126



CUE Tech Guide

- name: before-save

« Check that a content item has no unpublished relations before it is published:

- name: check-unpublished-related-content
href: http://host:port/checkUnpublishedContent
title: Unpublished Related Content
triggers:
- name: before-save-state-published

« Check a content item's spelling at regular intervals:

- name: check-spelling
href: http://host:port/spellChecker
title: Spell Checker
triggers:
- name: editor-recurring
properties:
interval: 20

« Print a content item:

- name: print-article
href: http://host:port/printArticle
title: Print Article
triggers:
- name: on-click

In order for this configuration to work there must not only be an enrichment service to print
the content item at http: //host:port/printArticle, the content item being edited must
also contain a button for the user to click. Such buttons must be defined in content type
definitions in the publication content-type resource. An enrichment service trigger button is
defined by a content item field element with a ui :editor child element. The ui : editor child
element must have a type attribute with the value enrichment-service and a name attribute
that matches the name of the CUE enrichment service. For example:

<field name="enrichmentbutton" type="basic" mime-type="text/plain">

<ui:label>Print</ui:label>

<ui:editor type="enrichment-service" name="print-article"/>
</field>

42.1.4 Enrichment Service Context Menu Entries

In some cases you may want users to be able to send a content item to an enrichment service by
selecting a menu entry. You can achieve this by adding menu entries to content item context menus.
A context menu can be displayed by right clicking on the content cards displayed in search results
and other lists of content item, or by clicking on the "hamburger" button displayed in the top right
corner of a content editor. To add an enrichment service to the context menus, you need to add a
configuration like this to /etc/escenic/cue-web/config.yml, as well as the main enrichment
service configuration:

extendedContextMenultems:
- name: "print-service"
title: "Print"

trigger: "on-print-menu-item-click"
publication: "tomorrow-online"
mimeTypes: ["x-ece/story"]

Copyright © 2015-2023 Stibo DX A/S Page 127



CUE Tech Guide

The extendedContextMenultems property can contain any number of children, each defining
a menu entry for a different enrichment service. Each menu entry definition should consist of the
following properties:

name
A name for the menu entry definition.

title
The label to appear on the menu entry.

trigger
A trigger name for the menu item. The name(s) you specify here must also appear in the
enrichment service's list of triggers. If you have specified on-print-menu-item-click as
in the example shown above, then the same trigger name would need to appear in the print
enrichment service configuration:
- name: print-article
href: http://host:port/printArticle
title: Print Article
triggers:
- name: on-click
- name: on-print-menu-item-click

publication (optional)
The publication with which the menu entry is to be associated. The menu entry will only appear
in the context menu of content items that belong to the specified publication. If you omit this
property then the menu entry will appear in the context menu of content items belonging to any
publication.

mimeTypes (optional)
The MIME types with which the menu entry is to be associated. The menu entry will only appear
in the context menu of content items of the specified MIME types. If you omit this property then
the menu entry will appear in the context menu of content items of all MIME types.

contentTypes (optional)
The content types with which the menu entry is to be associated. The menu entry will only
appear in the context menu of content items of the specified types. If you omit this property then
the menu entry will appear in the context menu of content items of all types.

states (optional)
The states with which the menu entry is to be associated. The menu entry will only appear in the
context menu of content items in the specified states. If you omit this property then the menu
entry will appear in the context menu of content items in all types.

selection (optional)
This property must be set to one of the following values:

["single"] (default)
This menu entry is only displayed for single item selections.

["multi”]
This menu entry is only displayed for multiple item selections. You should only specify
this option if the target enrichment service has been designed to handle multiple content
items. For details see section 4.2.3.

["single","multi"]
This menu entry is displayed for both multiple and single item selections. You should only

specify this option if the target enrichment service has been designed to handle multiple
content items. For details see section 4.2.3.

Copyright © 2015-2023 Stibo DX A/S Page 128



CUE Tech Guide

It doesn't make sense to specify both a mimeTypes and a contentTypes property. If you do, then the
contentTypes property is ignored, and only the mimeTypes property is used.

4.2.1.5 Handling Enrichment Service Errors

An enrichment service may sometimes fail and return an HTTP 5xx response. An enrichment service
request may also time out, if the service fails to respond quickly enough (see the timeout description
in section 4.2.1). By default, either kind of failure stops the execution of the current workflow. If, for
example, the enrichment service was started by a content item before-save trigger, then the content
item in question will not be saved if the enrichment service fails or times out. This may not, however
always be what you want. If the task performed by the enrichment service is regarded as non-essential,
you may want the content item to be saved anyway.

To achieve this, set the enrichment service's stopOnFailure property to f£alse. For example:

- name: check-minimum-tag
href: http://host:port/checkMinimumTag
title: Minimum Tags
stopOnFailure: false
triggers:
- name: before-save

If stopOnFailure is set to £alse in this way, then a failure will not interrupt the flow of events - the
content item will continue to be processed by any other configured enrichment services, and it will be
saved as requested. An info message reporting the failure will be sent to the CUE notification center,
but otherwise everything will proceed as normal.

If stopOnFailure is not specified, its default value is true.

If stopOnFailure is not specified or set to true, then by default failures are notified as followed:

Type of failure Error Message / Notification
Enrichment service not A "service unreachable" error dialog is displayed
reachable

Enrichment service timed out | A "service timed out" error dialog is displayed

HTTP 500 response The custom message included in the response object is used to display
an error dialog

Other HTTP 5xx responses |A generic HTTP 5xx error message is displayed in an error dialog

You can, however, set notifyOnFailure to true, for example:

- name: check-unpublished-related-content
href: http://host:port/checkUnpublishedContent
title: Unpublished Related Content
stopOnFailure: true
notifyOnFailure: true
triggers:
- name: before-save-state-published

If you do this, then the error messages displayed if the enrichment service is either unreachable or
times out are also sent to the CUE notification center. notifyOnfailure does not, however, have

Copyright © 2015-2023 Stibo DX A/S Page 129



CUE Tech Guide

this effect in the case of HTTP 5xx responses. HTTP 5xx messages are only displayed in dialogs,
irrespective of the notifyOnfailure setting

4.2.2 Creating an Enrichment Service

An enrichment service is a standard web service that accepts HTTP POST requests from CUE, and
responds with a specific subset of HTTP responses understood by CUE. You can create an enrichment
service using any web technology or platform you like so long as it conforms to CUE's enrichment
service protocol requirements.

When an enrichment service is triggered, CUE sends an HTTP POST request to the enrichment service
URL, with an Atom entry in the body of the request. The Atom entry will contain the content item
currently being edited in CUE, packaged as a VDF payload document. This is the same packaging that
is used to send content items to the Content Store web service - for details, see the Content Engine
Integration Guide.

The enrichment service can then examine the supplied content item, apply tests to it, modify it, modify
other content in the Content Store (via the Content Store's web service), make use of external web
services such as spelling or grammar checkers, publish the content item in external channels and so
on. It must, however, finally send one of the following HTTP responses back to CUE:

500 (Internal Server Error)
The enrichment service can give this response to indicate that an error of some kind has
occurred. Unless stopOnFailure has been set to false, CUE would then cancel the trigger
operation and either display an error dialog or notification containing the response message.
The response body can be one of the following types:

text/plain
A plain text response message to be displayed in an error dialog.

text/html
A formatted HTML response message to be displayed in an error dialog.

application/vnd.cue.notification+json
JSON data containing a notification to be sent to the CUE notification center. The JSON
data must have the following form:
{

"title"™ : "Notification title",
"body" : "Notification body"

400 (Bad Request)
The enrichment service can give this response to indicate that the POSTed content item
has failed some test or other, and the response can contain an explanatory message that is
displayed by CUE or sent to the notification center. A service that checks for unpublished
relations, for example, could send a 400 response if it found any unpublished relations. Unless
stopOnFailure has been set to false, CUE would then cancel the trigger operation (publish,
presumably) and either display an error dialog or notification containing the response message.
The response body can be one of the following types:

text/plain
A plain text response message to be displayed in an error dialog.

text/html
A formatted HTML response message to be displayed in an error dialog.

Copyright © 2015-2023 Stibo DX A/S Page 130


http://docs.escenic.com/ece-integration-guide/7.15/
http://docs.escenic.com/ece-integration-guide/7.15/

CUE Tech Guide

application/vnd.cue.notification+json
JSON data containing a notification to be sent to the CUE notification center. The JSON
data must have the following form:
{

"title"™ : "Notification title",
"body" : "Notification body"

204 (No Content)
The enrichment service can give this response to indicate that CUE should just carry on as
normal. A service that checks for unpublished relations, for example, could send a 204 response
if it did not find any unpublished relations: Unless stopOnFailure has been set to false,
CUE would then simply complete the publish operation that triggered the enrichment service
call, and take no further action.

200 (OK)
The enrichment service can give this response in a number of different circumstances. Exactly
what it means, and how it is used by CUE depends on the content returned in the body of the
response. This can be one of the following types:

text/plain
This response is functionally the same as a 204 (No Content) response from CUE's
point of view: the only difference is that CUE displays the text content of the response in
an information dialog. An enrichment service that automatically adds the content item to
an automatically selected list might, for example, return information about which list the

m

content item has been added to: "Item added to list 'urgent'™.

text/html
This response is similar to a 200 response with text/plain content except that the
information dialog displayed by CUE will contain formatted HTML.

application/vnd.cue.notification+json
In this case, the response body is JSON data containing a notification to be sent to the
CUE notification center. The JSON data must have the following form:
{
"title" : "Notification title",
"body" : "Notification body"
}

application/atom+xml
The Atom entry is expected to contain a content item. How the content item is handled
depends on the entry's <1ink rel="self"/>element:

« Ifthe 1ink element contains the same self URL as the Atom entry originally POSTed
by CUE, then it is assumed to be a modified version of the POSTed content item
(returned, for example, from a grammar correction service). If the Atom entry contains
all the fields originally POSTed by CUE, CUE overwrites the current content item
with the returned version and then continues with the operation that triggered the
enrichment service call (saving or publishing, for example). If, on the other hand,
the Atom entry only contains some of the fields originally POSTed by CUE, then
CUE only updates these fields before continuing with the operation that triggered the
enrichment service call.

« Ifthe 1ink element contains a different self URL from the original Atom entry, then
CUE opens the referenced content item in a new editor and completes the operation

Copyright © 2015-2023 Stibo DX A/S Page 131



CUE Tech Guide

that triggered the enrichment service call (saving or publishing the original content
item, for example).

This type of response cannot be sent by a multi-select enrichment service (see section
4.2.3).

application/vnd.vizrt.payload+xml
This response is a VDF payload document (described in Content Engine Integration
Guide). It is expected to contain a sequence of field definitions. CUE constructs and
displays a dialog box containing the fields specified in the VDF document, plus an

and button. The expectation is that the user will fill in the form and click OK, or
else click
If the user clicks , then the content of the filled form is submitted to the enrichment

service URL. The enrichment service can then process the content of the form and
respond again in any of the ways listed above. It could, for example, return a 204 (No
Content) response, or it could get CUE to display another dialog by returning another
200 (OK) response with a different application/vnd.vizrt.payload+xml. In
this way the enrichment service can, if necessary, force CUE to display a long sequence
of dialogs before finally performing some operation and terminating the operation that
initially triggered the enrichment service.

If the user clicks , then the operation that triggered the enrichment service is
cancelled.

4.2.3 Multi-select Enrichment Services

The ability to submit content items to an enrichment service by selecting a context menu entry opens
the possibility of submitting multiple content items in one go. You can enable this possibility by
specifying selection: ["multi"] or selection: ["single","multi"] when configuring a
context menu entry, as described in section 4.2.1.4. However, in order for this to work the enrichment
service must be able to handle multiple selections correctly. It must therefore differ from a single-
select enrichment service in the following ways:

« It must be designed to accept a text/uri-1list holding the URIs of the selected content items
rather than an Atom entry holding the selected content item itself.

« Ifits purpose is to modify the selected content items, then it must do so by submitting GET and PUT
requests to the Content Store web service for each URI in the list. It cannot include the modified
content items in an HTTP 200 (OK) response (which is what a single-select enrichment service
does).

These are the only differences between a multi-select enrichment service and a single-select
enrichment service.

If your enrichment service needs to handle both single and multiple selections then you must design
it as a multi-select service that handles text/uri-1ists rather than Atom entries, and add a
requestContentType property setting to the enrichment service's trigger configurations as follows:

- name: print-article
href: http://host:port/printArticle
title: Print Article
triggers:
- name: on-click
properties:
requestContentType: text/uri-list

Copyright © 2015-2023 Stibo DX A/S Page 132


http://docs.escenic.com/ece-integration-guide/7.15/
http://docs.escenic.com/ece-integration-guide/7.15/

CUE Tech Guide

- name: on-print-menu-item-click
properties:
requestContentType: text/uri-list

This property setting forces CUE to send a text/uri-1list to the enrichment service rather than an

Atom entry even for single content items.

4.2.4 Some Examples

This provides a couple of examples of how enrichment services can be used:

» A "text analysis" enrichment service that makes use of the "update content" action triggered by an

application/atom+xml response.

« A "post to Slack" enrichment service that makes use of the dialog sequence triggered by an

application/vnd.vizrt.payload+xml response.

Both example descriptions assume that an Atom entry like this is POSTed to the enrichment service:

<entry xmlns="http://www.w3.0rg/2005/Atom"
xmlns:app="http://www.w3.0rg/2007/app"
xmlns:metadata="http://xmlns.escenic.com/2010/atom-metadata"
xmlns:dcterms="http://purl.org/dc/terms/">
<id>http://host-ip-address/webservice/escenic/content/43</id>
<title type="text">Test</title>
<app:edited>2010-06-23T09:09:50.6542</app:edited>
<dcterms:created>2010-06-22T10:22:20.000%</dcterms:created>
<author>
<name>demo Administrator</name>
<uri>http://host-ip-address/webservice/escenic/person/2</uri>
</author>
<dcterms:identifier>4</dcterms:identifier>

<metadata:reference source="ece-auto-gen" sourceid="6d7203c9-27d5-4fce-blda-

a466ead83875" />

<link rel="http://www.vizrt.com/types/relation/home-section"
href="http://host-ip-address/webservice/escenic/section/4"
title="New Articles"
type="application/atom+xml; type=entry"/>

<link href="http://wrk-ermo:12345/publication-id/incoming/articled.ece"
rel="alternate"/>

<link href="http://host-ip-address/webservice/escenic/lock/article/43"
rel="http://www.vizrt.com/types/relation/lock"/>

<link rel="http://www.vizrt.com/types/relation/publication"
href="http://host-ip-address/webservice/escenic/publication/demo"
title="demo"
type="application/atom+xml; type=entry"/>

<metadata:creator>

<name>demo Administrator</name>
</metadata:creator>

<metadata:publication href="http://host-ip-address/webservice/escenic/publication/

demo">

<link rel="http://www.vizrt.com/types/relation/home-section"
href="http://host-ip-address/webservice/escenic/section/4"
title="New Articles"
type="application/atom+xml; type=entry"/>

<link rel="http://www.vizrt.com/types/relation/section"
href="http://host-ip-address/webservice/escenic/section/4"
title="New Articles"
type="application/atom+xml; type=entry"/>

Copyright © 2015-2023 Stibo DX A/S

Page 133



CUE Tech Guide

</metadata:publication>
<link href="http://host-ip-address/webservice/escenic/content/43" rel="edit"/>
<link href="http://host-ip-address/webservice/escenic/content/43" rel="self"/>
<content type="application/vnd.vizrt.payload+xml">
<vdf:payload xmlns:vdf="http://www.vizrt.com/types"
model="http://host-ip-address/webservice/escenic/model/another">
<vdf:field name="TITLE">
<vdf:value>Test</vdf:value>
</vdf:field>
<vdf:field name="BODY">
<vdf:value>
<div xmlns="http://www.w3.0rg/1999/xhtml">
<p>This is a test</p>
</div>
</vdf:value>
</vdf:field>
<vdf:field name="ANALYSIS"></vdf:field>
</vdf:payload>
</content>
</entry>

4.2.4.1 A "Text Analysis" Enrichment Service

This service sends the content of a story to an external text analysis service which returns some kind
of results (a list of keywords, for example). One way of handling this would be to include a hidden
"analysis" field in all the content types you want to be analyzed, to be used as a container for the
keywords. Your enrichment service could then forward the content of all the visible fields to the
analysis service, and add the keywords returned from the service to the hidden "analysis" field.

Here are the configuration settings for such a service:

enrichmentServices:
- name: "Analyze text"
href: http://my-web-service-host/analysis-service
title: "Analyze text"
triggers:
- name: after-save-state-published
properties: {}
mimeTypes: ["x-ece/story"]

This configuration specifies that any "story-type" content items (content items that don't contain any
binary fields such as video or images, and aren't live events or Newsgate stories) will be posted to the
enrichment service at http: //my-web-service-host/analysis-service when they are published.

When the enrichment service receives such a content item, it forwards the content from all the visible
fields to a text analysis service. When it gets the results back from the text analysis service, it sends
an HTTP 200 response back to CUE with an application/atom+xml body containing a copy of
the original Atom entry posted by CUE. The only part of the Atom entry that is modified is the VDF
payload. All the fields except the ANALYSIS field have been removed, and the ANALYSIS field now
contains the keywords returned from the text analysis service:

<vdf:payload xmlns:vdf="http://www.vizrt.com/types"
model="http://host-ip-address/webservice/escenic/model/another">
<vdf:field name="ANALYSIS"></vdf:field>
<vdf:value>sport, football,brazil</vdf:value>
</vdf:field>
</vdf:payload>

Copyright © 2015-2023 Stibo DX A/S Page 134



CUE Tech Guide

When CUE receives this response from the enrichment service, it overwrites the ANALYSIS field of
the content item with the value supplied by the enrichment service and publishes the content item. No
other fields are modified.

4.2.4.2 A "Post to Slack" Enrichment Service

This enrichment service posts a link to the Slack messaging service whenever a story is published.
Before it posts the link, however, it needs to prompt the CUE user to enter a short name for the story,
and the name of the Slack channel in which it is to be posted.

Here are the configuration settings for such a service:

enrichmentServices:
- name: "Post to Slack"

href: http://my-web-service-host/slack-service

title: "Post to Slack"

triggers:

- name: after-save-state-published

properties: {}
mimeTypes: ["x-ece/story"]

This configuration specifies that any "story-type" content items (content items that don't contain any
binary fields such as video or images, and aren't live events or Newsgate stories) will be posted to the
enrichment service at http: //my-web-service-host/ slack-service when they are published.

When the Slack enrichment service receives such a content item, it returns an HTTP 200 response
with an application/vnd.vizrt.payload+xml body containing a VDF payload document. The
VDF document contains the prompts to be displayed in the dialog, for example:

<vdf:payload xmlns:vdf="http://www.vizrt.com/types" model="http://web-service-host/
slack-channel-description.xml”>
<vdf:field name="slack-name”>
<vdf:value>red-herring</vdf:value>
</vdf:field>
<vdf:field name="channel”>
<vdf:value>#sports</vdf:value>
</vdf:field>
</vdf:payload>

Note the following about this document:

« The vdf :payload element's model attribute must contain the URI of a VDF model document
defining the structure of the payload. You must create this model document yourself and make it
available somewhere (most likely on the same host as the enrichment service itself).The VDF model
document for the example payload shown above might look like this:

<model xmlns:vdf="http://www.vizrt.com/types">
<schema>
<fielddef name="slack-name" label="Story name in Slack" xsdtype="string"/>
<fielddef name="channel" label="Slack channel" xsdtype="string"/>
</schema>
</model>

For a description of the VDF model document format, see here.

« The values in the fields are defaults. If you do not want to supply defaults to the fields in the form,
you can omit the values.

Copyright © 2015-2023 Stibo DX A/S Page 135


https://slack.com/
http://docs.escenic.com/ece-integration-guide/7.15/model.html

CUE Tech Guide

When CUE receives the payload document, it looks up the referenced model document and uses

the information to construct and display a dialog containing the specified fields. The user can then
enter the required values. When the user selects OK, CUE will POST the payload document (with any
changes made by the user) back to the enrichment service. The enrichment service can then post the
story to Slack and return HTTP 204 (No Content) to CUE, allowing CUE to complete the operation
that initiated the enrichment service call. Alternatively, the enrichment service could return HTTP 200
(OK) with a text/plain Content-Type header in order for CUE to display a message indicating that
the story has been posted to Slack. If the user selects instead of OK, then nothing is sent to the
enrichment service and CUE just carries on and completes the operation that initiated the enrichment
service call.

4.2.5 Learning More About Enrichment Services

If you want to learn more about CUE enrichment services, take a look at this series of articles on
http://blogs.escenic.com:

Diving into enrichment services

4.3 Drop Resolvers

A drop resolver is an HTTP service that reacts to objects dropped into CUE relation drop zones.

A drop resolver is invoked when an object that matches a specified MIME type or URL pattern is
dropped in a drop zone. The drop resolver is passed a drop context containing the information
needed to be able to upload content to the CUE Content Store or the CCI Newsgate back end. A drop
resolver can therefore be used to seamlessly import external objects dropped into CUE.

A typical use of a drop resolver would be to handle the import of images dragged into CUE from a
Digital Asset Management (DAM) system. When such an image is dropped into a story relation in
CUE, CUE checks the dropped image's MIME type or URI and calls the appropriate drop resolver. The
drop resolver then uploads the dropped image in the background to the appropriate back end, and
return the URI of the uploaded content to CUE. This allows CUE to continue with the drop operation
using the URL of the uploaded copy rather than the object that was originally dropped.

Drop resolvers can also be used to customize what happens when relations are created by dropping
existing content items into other content items' relation drop zones. You can use a drop resolver, for
example, to copy an image dragged from a foreign publication into the publication where it is being
dropped, so that the resulting dropped image is not cross-published.

4.3.1 Configuring Drop Resolvers in CUE

All you need to do make CUE call a drop resolver is add a few entries to the CUE configuration file,
/etc/escenic/cue-web/config.yml. Open this file for editing. If it does not already contain a
dropTriggers entry, then add one:

dropTriggers:

Underneath this entry, you can add sub-entries for all the drop resolvers you want to define. A drop
resolver configuration contains the following entries:

- name: resolver-name
href: http://host:port/service-url

Copyright © 2015-2023 Stibo DX A/S Page 136


http://blogs.escenic.com
http://blogs.escenic.com/rd/2016/vbv7nd-Diving-into-enrichment-services.html

CUE Tech Guide

resultMimeType: mime-type
attributes:
custom-resolver-attribute

triggers:
trigger-specification

where:

name
Is the name of the resolver. The name must be unique since CUE identifies the resolvers by their
names. Any resolver definition with a duplicate name will be ignored.

href
Is the URI of the resolver service. The resolver service can run in a different domain from CUE,
but will then need to be specified as an authorized endpoint in order to be granted access to
CUE's endpoints (see section 4.2.1.2).

resultMimeType
Is a CUE MIME type, identifying the type of the content returned from the drop resolver.
attributes
Is an optional property that you can use to send custom parameters to the drop resolver. For
example:
attributes:
my-resolver-param-1: "valuel"
my-resolver-param-2: "value2"

In general, you can choose any names that you like for these attributes. There is, however,

one attribute name that you must avoid, since it is reserved by CUE. This reserved name is
serviceUri.In the situation where the MIME type of a dropped object is supported by more
than one content type in the publication, CUE can automatically display a dialog asking the user
to choose which content type to use for the dropped object. CUE then creates a serviceUri
attribute from the name of the selected content type (for example http: //content-store-host/
webservice/publication/publication-name/binary/content-type-name) and adds it to
the object passed to the drop resolver. This content type selection dialog is only displayed if CUE
is configured to display it (see section 2.2.5).

triggers
A specification of the conditions that will trigger CUE to send a dropped object to the drop
resolver. The specification can either consist of an array of MIME types or an array of URI
patterns (but not both). For example:

triggers:
mimeTypes: [mime-type,...]

or:

triggers:
urlPatterns: [url-pattern,...]

If mimeTypes is specified, then the drop resolver will be called whenever an object with a
MIME type that matches one of the specified MIME types is dropped into CUE.

If urlPatterns is specified, then the drop resolver will be called whenever an object with a
URL that matches one of the specified URL patterns is dropped into CUE.

Here is an example configuration for a Google image import drop resolver:

Copyright © 2015-2023 Stibo DX A/S Page 137



CUE Tech Guide

dropTriggers:
- name: "GoogleImageImport"
href: "http://my-server/GoogleImageImport"
resultMimeType: "x-ece/picture"
triggers:
urlPatterns: ['“https?:\/\/www\.google\..*\/imgres\?2.*"']

This configuration will cause CUE to forward any dropped object with a URL that matches the regular
expression *https?:\/\/www\.google\. .*\/imgres\?. * to the drop resolver http://my-
server/GoogleImageImport.

4.3.2 Drop Resolver Parameters

When CUE triggers a drop resolver, it passes an object to the resolver containing the following
parameters:

uri
The URI of the dropped object.

endpoints
CUE's configured endpoints (one or more of Content Store, CCI Newsgate and the bridge).
attributes

Any parameters supplied in the attributes object of the drop resolver configuration (see
section 4.3.1).

accessTokens

Access tokens that can be used to authenticate any requests the drop resolver sends to CUE's
endpoints. These access tokens will only be passed to the drop resolver if it:

« Either belongs to the same domain as CUE

« Orislisted as an authorized endpoint (see section 4.3.1).

context

The context of the drop operation. For an CUE publication, this consists of the following
structure:

publication:
name: publication-name
uri: publication-uri

where:
» publication-name is the name of the CUE publication in which the drop operation occurred.

» publication-uri is the URI of the CUE publication in which the drop operation occurred.

For a Newsgate publication, the context is:

storylId: story-folder-id

where story-folder-id is the ID of the story folder in which the drop operation occurred.

4.3.3 Drop Resolver Return Values

A drop resolver must return one of the following HTTP responses on termination:

Copyright © 2015-2023 Stibo DX A/S Page 138



CUE Tech Guide

HTTP 200 (OK)
The drop resolver has terminated successfully. The body of the HTTP response must contain
the URI of a resource in the Content Store or CCI Newsgate back end (usually this will be an
imported version of the object that was dropped by the user). CUE will then complete the drop
operation using the supplied URI.

HTTP 204 (No Content)
The drop resolver has terminated successfully, but does not have a URI to return. CUE will then:

« Ifthe dropped object was external, abandon the drop operation.

« If the dropped object was an CUE content item, complete the drop operation with the
original content item.

HTTP 4xx Or 5xx
An error of some kind has occurred. The body of the HTTP response must contain an error
message text. CUE will then abandon the drop operation and display the supplied error message
in a dialog box.

4.4 URL-based Content Creation

CUE lets you create a draft content item by simply passing a URL to a browser. A script running

in some other application such as Trello, Google Sheets or Slack can simply construct a CUE URL
containing the details of a new content item and pass the URL to a browser. CUE will then start in the
browser and create the requested content item, ready for the user to continue editing (if required), save
and publish.

If the user is currently logged in to CUE then the new content item is created immediately. If the user
is not logged in, then the CUE login screen is displayed in the browser. Once the user has logged in, the
content item is created.

4.4.1 Content Creation URL Structure

A content creation URL must have the following overall structure:

https://your-cue-host/cue-web/#/main?parameter-1ist"

where your-cue-host is the host name (and possibly the port number) of your CUE host and
parameter-list is a sequence of three URL parameters separated by & characters:

uri=source-ids&mimetype=mime-type&extra=content-definition
These parameters must contain the following values:

uri=source-id
A source ID is a unique string used to identify a content item. The section 4.4.2 generates an ID
from the current date and time, but you can use whatever method you choose to supply a unique
string.

mimetype=mime-type
You must specify the MIME type x-ece/new-content; type=story.

Copyright © 2015-2023 Stibo DX A/S Page 139



CUE Tech Guide

extra=content-definition
content-definition is a JSON value defining the content you want to create. The structure of the
JSON data depends on whether you want to create a storyline container (section 4.4.1.1) or a
classic XHTML-based story (section 4.4.1.2).

Note that all the field names and values in the JSON structure must be enclosed in quotes,
otherwise the URL will not be accepted by CUE.

The values of the three URL parameters must all be URL-encoded.

4411 Defining a Storyline Container

To create a storyline container, your extra parameter JSON data must be structured as follows:

{

"container": true,

"containerSlug": "container-slug",
"homePublication": "publication-name",
"modelURI": {
"Sclass": "URI",
"string": "model-uri"
I
"storyElements": story-elements,
"tags": tag-references
}
where:

container-slug
Is an optional slug for the container. If you do not want to supply a slug, then omit the entire
containerSlug field.

publication-name
Is the name of the publication in which the container is to be created.

model-uri
Is the web service URI of the content model for the storyline type you want to create.

story-elements
Is an array of field definitions defining the content you want to insert into the new storyline, for
example:

"storyElements": [
{
"storyElement":"headline",
"value":"Example Headline"

"storyElement":"lead text",
"value":"Example lead text"

"storyElement":"paragraph",
"value":"Example para"

"storyElement":"interview",
"elements": [
{
"storyElement":"interview question",

Copyright © 2015-2023 Stibo DX A/S Page 140


https://www.w3schools.com/tags/ref_urlencode.asp

CUE Tech Guide

"value":"Example question"

]

The field definitions in the array must:
« Comply with the content model referenced in the mode1URTI field.

» Be either plain text story elements such as headline and paragraph, or complex story
elements such as interview (that must also only contain plain text story elements).
Graphic / video story elements are not supported.

tag-references
Is an optional array of tag references to be added to the story (see section 4.4.1.3 for details). If
you do not want to tag the story, then omit the entire tags field.

44.1.2 Defining a Classic Story

To create a classic XHTML-based story, your extra parameter JSON data must be structured as
follows:

{
"modelURI": {
"string": "model-uri",
"Sclass":"URI"
by
"homeSectionUri":"home-section-uri",
"values": content-item-field-values,
"tags": tag-references

}
where:

model-uri
Is the web service URI of the content model for the content item you want to create.

home-section-uri
Is the web service URI of the section to which you want to add the new content item.

values
Is an object containing a series of field values defining the content you want to add to the new
content item. You can leave this object empty if you don't want any of the fields in the new
content item to be predefined, for example:

"values": {}

The fields must be identified by their names as specified in the CUE content-type resource,
not by the labels displayed in CUE. To predefine values for the title and body fields of a
content item, you would need to specify:
"values": {
"title": "This is the title",
"body": "<p>This is the body.</p>"
}

Copyright © 2015-2023 Stibo DX A/S Page 141



CUE Tech Guide

tag-references
Is an optional array of tag references to be added to the story (see section 4.4.1.3 for details). If
you do not want to tag the story, then omit the entire tags field.

4.41.3 Tagging the Story

You can add tags to both storylines and classic stories by including a tags containing an array of tag
references like this:

"tags": [
{
"Sclass": "URI",
"string": "https://host/webservice/escenic/classification/tag/
tag:entity@escenic.com,2017:iPad"
br
{
"Sclass": "URI",
"string": "https://host/webservice/escenic/classification/tag/
tag:location@escenic.com,2017:home"

}

The tag references must be URLs referencing tags that are already defined in the Content Store - it is
not possible to create new tags.

4.4.2 Example Script

The following example bash script shows how to construct a content creation URL and submit it to
CUE. It creates a storyline container with tags.

#!/bin/bash
urlencode () {
# urlencode <string>
old lc collate=$LC COLLATE
LC_COLLATE=C
local length="s${#1}"
for (( 1 = 0; 1 < length; i++ )); do
local c="S${l:i:1}"
case $Sc in
[a-zA-Z0-9.~ -]) printf "S$c" ;;
*) printf '$%%02X' "'Sc" ;;
esac
done
LC COLLATE=$old lc collate
}
cue="https://your-cue-host/cue-web"
webservice="https://your-escenic-webservice-host/webservice"
homepublication="publication-name"
homesection="$webservice/escenic/section/section-id"
modeluri="S$webservice/escenic/shared/model/container/regular-news-story"
mimetype="x-ece/new-content; type=story"
sourceid="date '+%y%m%d-%HSM%S'"®
container=true
containerslug="test container slug"

Copyright © 2015-2023 Stibo DX A/S Page 142



CUE Tech Guide

storyElements="[{\"storyElement\":\"headline\",\"value\":\"example plain text\"},
{\"storyElement\":\"image\", \"value\":\"example plain text\"} , {\"storyElement
\":\"paragraph\",\"value\":\"example plain text\"}, {\"storyElement\":\"paragraph\",
\"value\":\"example plain text\"}, {\"storyElement\":\"interview\",\"elements\":
[{\"storyElement\":\"interview question\",\"value\":\"example plain text\"}]}1"

tags="[{\"\Sclass\": \"URI\", \"string\": \"https://host/webservice/escenic/

classification/tag/tag:entity@escenic.com,2017:1Pad\"}, {\"\S$class\":
\"URI\", \"string\": \"https://host/webservice/escenic/classification/tag/

tag:nationality@escenic.com,2017:German\"}]"

extra="{\"modelURI\":{\"string\":\"${modeluri}\",\"\$class\":\"URI\"},
\"homePublication\":\"${homepublication}\", \"container\":${container},

\"storyElements\": ${storyElements}, \"containerSlug\":\"${containerslug}\", \"tags
\": S${tags}}"

url=Scue/#/main?uri=$ (urlencode "$sourceid") \&mimetype=$ (urlencode
"Smimetype") \&extra=$ (urlencode "S$Sextra")

google-chrome $url &

If you edit this script to match your installation, then running it should start the Chrome browser and
create a draft content item. You would need to replace your-cue-host and your-escenic-webservice-
host with the correct host names, replace homepublication with the name of one of your publications,
and replace section-id with the ID of a section in that publication before running it. Otherwise, as
long as you have a content type called regular-new-story, with a suitable content model, it should
work.

4.5 URL-based Content Editing

CUE lets you open a content item by simply passing a URL to a browser. A script running in some
other application such as Trello, Google Sheets or Slack can simply construct a CUE URL containing
ID of an existing content item and pass the URL to a browser. CUE will then start in the browser and
open the requested content item, ready for the user to continue editing (if required), save and publish.

If the user is currently logged in to CUE then the new content item is opened immediately. If the user
is not logged in, then the CUE login screen is displayed in the browser. Once the user has logged in, the
content item is opened.

45.1 Content Editing URL Structure

A content editing URL must have the following overall structure:

http://your-cue-host/cue-web/#/main?escenicid=content-item

where:

« your-cue-host is the host name (and possibly the port number) of your CUE host

Copyright © 2015-2023 Stibo DX A/S Page 143



CUE Tech Guide

« content-item is the ID of the content item to be edited. The ID can be supplied in the following
three forms:

« Just the ID itself. For example:

http://mycueserver.com:81/cue-web/#/main?escenicid=1234

« Asa Content Store web service URL, specified relative to the CUE installation's escenic end
point:
http://mycueserver.com:81/cue-web/#/main?escenicid=escenic/content/1234
« Asacomplete Content Store web service URL:

http://mycueserver.com:81/cue-web/#/main?escenicid=http://
mycontentstore.com:8080/webservice/escenic/content/1234

4.6 Logout Triggers

Alogout trigger is a simple HTTP GET request that is sent to a specified URL when the user logs out
from CUE. It provides a mechanism for integrators to automatically perform other actions (such as
logging out of a VPN) on logout from CUE. You can define multiple logout triggers. In this case, a GET
request will be sent to each specified URL when the user logs out.

The CUE logout process does not wait for any response from the defined trigger URLs — it simply
makes the requests and then performs the logout operation.

To define logout triggers:

1. If necessary, switch user to root.

$ sudo su
2. Open /etc/escenic/cue-web/config.yml for editing. For example:
# nano /etc/escenic/cue-web/config.yml

3. Add alogoutTriggers property containing a list of trigger URLs to which GET requests are to
be sent:

logoutTriggers:
- http://my-vpn-service/logout
- http://my-other-service/logout

Save the file.

Enter:

# dpkg-reconfigure cue-web-3.15

This reconfigures CUE with the changes you have made.

4.7 CUE Safe Mode

CUE safe mode lets you easily disable some or all extensions of you have installed to help you track
down the cause of any problems that may arise.

To disable all web components, enrichment services and drop resolvers you have installed:

Copyright © 2015-2023 Stibo DX A/S Page 144



CUE Tech Guide

1. Open the panel by selecting the == panel button (on the left).
2. Double-click to display the page.
3. Check the Enable safe mode option at the top of the page:

cuc

Manual control of custom components Enable Safe Mode
[ Enable for a
Kkitchen sink [ Enable
Edit Summary Fields [ Enable
Use Wire Service [ Enable
[ Enable for a
Twitter Timelines [ Enable
Image Search [ Enable
General info [ Enable
Text Madification [ Enable
Storyline Stat [ Enable
Apply Changes Save NewsGate catch Get Report
4. Select

5.  Refresh any open CUE browser tabs to see the effects of the change.

All extensions are now disabled. You can re-enable extensions individually or in groups by selecting
the individual check boxes on the rest of the page, selecting and once again
refreshing any open CUE browser tabs. By enabling and disabling extensions and then testing you can
often determine whether or not an extension is the cause of your problem and if so, which one.

4.8 Custom Capabilities (Content Store only)

A CUE capability is a unit of CUE functionality that can be enabled or disabled for individual users.
This makes it possible for different users to see different versions of CUE, customized to match their
role. A house journalist, for example, may be granted access to different functionality from an editor
or a freelance journalist. All the standard side panels and metadata panels in CUE are defined as
capabilities and can therefore be either hidden or shown based on a user's role.

If you have extended CUE with your own web components, then you can also define custom
capabilities that will allow them to be enabled and disabled in the same way as the built-in
functionality. A custom capability in CUE is simply a name that you assign to a web component
by setting a property in its configuration file. Here, for example, is a side panel web component
configuration that includes a capability definition:

sidePanels:
- id: "twitter-home-panel"
name: "Twitter Timelines"
directive: "cue-custom-panel-loader"
isAngular: true
webComponent :
modulePath: "webcomponents/twitter/twitter-home-panel.js"

Copyright © 2015-2023 Stibo DX A/S Page 145



CUE Tech Guide

icon: "twitter-home-panel-icon"
mimeTypes: []
homeScreen: true
metadata: []
active: false
order: 705
capability: "twitter-panel"”

Here is a metadata panel web component configuration with a capability definition:

editors:
metadata:
- name: "storyline-stat"
directive: "storyline-stat"
cssClass: "storyline-stat"
title: "Storyline Stat" #translate
webComponent :

modulePath: "webcomponents/storyline/storyline-stat.js"
icon: "storyline-stat-icon"

mimeTypes: ["x-ece/story", "x-ece/new-content; type=story"]

order: 731
capability: "storyline-stat"

You can add a capability property like this to any side panel or metadata panel configuration (but
not to a custom field editor configuration). Your capability name must not clash with any of the built-
in capability names. All the built-in capabilities have names that start with cue-, so just avoid this
prefix in your names. If you have a group of extensions that are so closely related that they can be seen
as a single piece of functionality, then you can give them all the same capability name: it will then be

possible to enable/disable them as a group.

The management of user access to CUE capabilities is a Content Store responsibility, so once you have
defined your custom capabilities in CUE, you will need to add some corresponding configurations
to the Content Store and then grant selected users access to the capabilities using Web Studio. For

information about how to do these things, see Capability Definitions and Capabilities.

Copyright © 2015-2023 Stibo DX A/S

Page 146


http://docs.cuepublishing.com/ece-pub-design-guide/7.15/capability_definitions.html
http://docs.cuepublishing.com/ece-pub-admin-guide/7.15/capabilities.html

CUE Tech Guide

5 DC-X Integration

This section provides a preliminary description of the DC-X extension for CUE. DC-X is a Digital Asset
Management system offering simple but sophisticated functionality for the creation, management and
storage of digital assets such as text, images, video and audio.

The main components of the CUE DC-X extension are:

A DC-X side panel in CUE that allows users to search DC-X for images, videos and so on, for import
into CUE.

A related drop resolver (an HTTP service that reacts to objects dropped into CUE). This drop
resolver listens for drops of DC-X resources, dragged either from the DC-X side panel or from a DC-
X client running on the same device as CUE. On detecting such an event, the drop resolver imports
the dropped resource(s) into CUE. For general information about drop resolvers, see section 4.3.

A DC-X Wires side panel in CUE that allows users to browse and search for wire stories in DC-X,
and import selected wire stories for use in CUE.

The extension includes three features that depend on the use of the CUE Zipline extension. These are:

Reporting back to DC-X on the use of DC-X assets in CUE
Copying back to DC-X assets that are uploaded to CUE

Import of wire stories from DC-X

5.1 DC-X Drop Resolver Installation

The DC-X extension requires the installation of the DC-X drop resolver. Currently this component is
not available for download via the usual channels. Contact Stibo DX through your sales or support
representative to obtain a copy of the DC-X drop resolver and instructions on how to install it.

5.2 DC-X Extension Configuration

These instructions are based on the assumption that the DCX drop trigger has been installed and is
accessible from CUE.

1.

Switch user to root (if necessary)

$ sudo su

Open /etc/escenic/cue-web/config.yml for editing. For example
# nano /etc/escenic/cue-web/config.yml

Edit the file as described in the following sections.

Save the file.

Enter the following to reconfigure CUE:
# dpkg-reconfigure cue-web-3.15

Copyright © 2015-2023 Stibo DX A/S Page 147



CUE Tech Guide

5.2.1 Endpoint Configuration

The DC-X system with which CUE is to communicate must be configured as an endpoint, in the same
way as the Content Store and CUE Print back ends. Add the URI of the DC-X endpoint as a new
property under endpoints. For example:

endpoints:
escenic: "http://escenic-host:81/webservice/index.xml"
newsgate: "http://newsgate-host/newsgate-cf/"
dc-x: "http://dcx-host/dex/"

5.2.2 Side Panel Configuration

Add endpointServices, sidePanels and useDCXWirePanel configurations, which should look
something like this:

endpointServices:
dc-x:
- serviceName: "dcx-login.service"

sidePanels:
- 1d: "dcx-assets"
isAngular: true

name: "DC-X Assets" #translate

cssClass: "dcx dcx-assets"

directive: "dam-datasource"

mimeTypes: ['x-ece/story', 'x-ece/container', 'x-ece/new-content; type=story', 'x-

ece/event', 'x-ece/gallery',]
homeScreen: false
active: true
requires: ["dc-x"]
order: 302
attributes:
dcxChannels: ['ch020dcxsystempoolapict', 'ch060dcxsystempoolvideo',
'ch050dcxsystempoolnative']

- id: 'dcx-wires'
name: 'DC-X Wires' #translate
directive: 'dam-datasource'

homeScreen: true

order: 301

attributes:
dcxChannels: ['channel pool story']
updateInterval: 30

useDCXWirePanel: true

The DC-X Wire panel configuration is optional. If you do not intend to make use of DC-X wires
from CUE, then you can omit the dex-wires side panel configuration and the useDCXWirePanel
property (or set useDCXWirePanel to false).

There is an example configuration file called DCX . ym1 included in the CUE distribution that you can
copy and uncomment.

Make sure that the dexChannels property is correctly set. This property must contain a list of the
DC-X channels that CUE should have access to. You must use the channel IDs to specify the channels,
not their names.

Copyright © 2015-2023 Stibo DX A/S Page 148



CUE Tech Guide

You can use the updateInterval property to specify how frequently the DC-X Wire panel is to be

updated. The interval is specified in seconds.

5.2.3 Drop Resolver Configuration

Add a drop resolver (or drop trigger) configuration, which should look something like this:

dropTriggers:
- name: DCXToContentStorelImport
href: "http://drop-resolver-host/DCXToContentStoreImport"
triggers:

mimeTypes: ['x-dcx/image', 'x-dcx/postscript', 'x-dcx/illustrator', 'x-dcx/pdf',

'x-dcx/video']

urlPatterns: ['“https?:\/\/dcx-host\/dcx\/api\/document\/.*"', '“https?:\/\/dcx-

host\/dcc\/document\/.*"]
resultMimeType:

- sources: ['x-dcx/image', 'x-dcx/postscript', 'x-dcx/illustrator', 'x-dcx/

pdf']
"x-ece/picture"]

results: [
- sources: ["x-dcx/video"]
[

results: ["x-ece/video"]

- sources: ['“https?:\/\/dcx-host\/dcx\/api\/document\/.*', '“https?:\/\/dcx-

host\/dcc\/document\/.*"]
results: ["x-ece/picture", "x-ece/video"]
attributes:
defaultState:
- dcxTypes: ["image", "postscript", "illustrator", "pdf", "video"]
state: "published"
fieldMapping:
- dcxTypes: ["image", "postscript", "illustrator", "pdf"]
mapping:
- name: "title"
value:
- dcxField: "Filename"
- name: "caption"
value:
- dcxField: "body"
- dcxField: "Headline"
- name: "credit"
value:
- dcxField: "Provider"
- name: "byline"
value:
- dcxField: "Creator"

- dcxTypes: ['video']
mapping:
- name: "title"
value:

- dcxField: "Filename"
- name: "description"
value:
- dcxField: "body"
- dcxField: "Headline"
- name: "credit"
value:
- dcxField: "Provider"
- name: "byline"
value:
- dcxField: "Creator"

Copyright © 2015-2023 Stibo DX A/S

Page 149



CUE Tech Guide

where drop-resolver-host and dcx-host are replaced by the appropriate host names.

The defaultState attribute determines which states will be assigned to dropped assets. You can
differentiate the dropped assets by their DC-X type and assign different states to different types of
asset. In the example shown above, all types of asset are assigned the state published.

The £ieldMapping defines how DC-X field values are to be mapped on to Content Store fields. You
can differentiate the dropped assets by their DC-X type and set different field mappings for different
types of asset. In the example shown above, video assets are assigned different field mappings from the
other asset types. You can map several DC-X fields onto one Content Store field:

- name: "description"
value:
- dcxField: "body"
- dcxField: "Headline"

In this case the DC-X fields must be specified in priority order: the first non-empty field is used to fill
the Content Store field.

5.2.4 Content Type Configuration

In order to support the automatic upload of assets from the Content Store to DC-X, a special field must
be added to the definition of all relevant content types (i.e, graphics and video content types). This
field is used to hold DC-X status information about the content items / assets. The field can have any
name, but it must satisfy the following requirements:

+ Beabasic field with the MIME type application/json
« Beread-only

o Beidentified as a DC-X status field with a ui : dam-status child element

It should also ideally be hidden. Here is an example of a suitable field definition:

<field name=" dam status" type="basic" mime-type="application/json">
<ui:hidden/>
<ui:read-only/>
<ui:dam-status/>

</field>

5.2.5 Zipline Configuration

CUE Zipline is a CUE extension that was originally designed to support CUE Print integration, but is
now also used to support DC-X integration. For general information about CUE Zipline and how to
configure it, see here.

CUE Zipline supports data transfer between DC-X and CUE. Specifically, it enables the transfer of:

« Reports on the use of DC-X assets in CUE
« Assets uploaded to CUE
«  Wire stories from DC-X to CUE

To make CUE Zipline support basic DC-X integration (excluding the import of wire stories), add a DC-
X processor definition to the processors entry in the CUE Zipline configuration file:

Copyright © 2015-2023 Stibo DX A/S Page 150


http://docs.cuepublishing.com/zipline-doc-user-guide/1.9/

CUE Tech Guide

processors:

# Reporting usage information for DC assets
- type: dcx
endpoint:
# URL of DCX API endpoint
url: dcx-integration-endpoint
user: dcx-integration-user
password: dcx-integration-password
cache:
# Override default cache capacity (10000)
max_size: dcx-integration-cachesize

# Base URL of CUE web installation (e.g., http://server:port/cue-web/)
cue web: cue-web-endpoint

# Configuration of usage info block
info:
view:
label: View
link text: Browse
edit:
label: Edit
link text: Open in CUE
upload:
upload-configuration

The DC-X processor definition contains the following properties:

type
Must be set to dex.

endpoint
Must contain properties specifying the DC-X endpoint URL plus a valid DC-X user name and
password.

cache
May optionally be used to specify cache settings.

cue_web
Must contain the CUE endpoint URL.

upload
May optionally be used to define what kinds of uploaded assets should be copied back to DC-X,
and how they should be handled by DC-X. For details see section 5.2.5.1.

5251 Upload Configuration

processors:
- type: dcx
upload:
- filter:
publications:
- tomorrow-online
content-types:
- picture
- graphic
states:

Copyright © 2015-2023 Stibo DX A/S Page 151



CUE Tech Guide

- approved
- published
content:
tags:
- name: Creator
meta: creator
folder: native

The upload property controls the upload of assets from the Content Store to DC-X. It can contain a
list of upload specifications, each of which consists of the following three properties:

filter
This property contains a set of criteria that determine which of the assets uploaded to the
Content Store should be copied to DC-X. The criteria are:

publications
A list of publication names. Only assets uploaded to these publications will be copied to
DC-X.

content-types
A list of content type names. Only these content types will be copied to DC-X.

states
A list of workflow state names. Only content items in one of these states will be copied to
DC-X

content
This property contains a tags property that defines the mapping between content item fields
and DC-X tags. For details, see section 5.2.5.2.

folder
This property specifies the DC-X upload folder to use.

5.25.2 Tag Mapping
The tag mappings specified in a tags property consist of:

« A name property identifying a DC-X tag
« A second property specifying how the DC-X tag is to be set

The following variations are possible:

. - name: Creator
field: byline

Assign the value of the uploaded content item's byline field to the DC-X Creator tag.

. - name: Creator
meta: creator

Assign the value of the uploaded content item's creator metadata field to the DC-X Creator tag.

. - name: Creator
first-of:
- field: byline
- meta: author

Copyright © 2015-2023 Stibo DX A/S Page 152



CUE Tech Guide

- meta: creator

Read the fields listed under £irst-of in the specified order. Use the first one that contains a value
to set the DC-X Creator tag.

. - name: body
template: >
<p>{{caption}}</p>
context:
- name: caption
field: caption

Use the result of executing the specified Jinja2 template to set the DC-X body tag. The context
property can be used to define the variables that will be available to the template. These variables
can be assigned values in exactly the same way as values are assigned to DC-X tags. So in this
example, the { {caption}} variable will be replaced with the content of the uploaded content
item's caption field.

5.2.5.3 Wire Stories Configuration

In order for CUE Zipline to support the import of wire stories from DC-X, you need to add a dex-
converters top-level section like this to the CUE Zipline configuration file:

dcx-converters:
# Configuration to convert DC-X wire story to CUE storyline in a container
wire:
# Relative path where templates for DC-X wire live
# template-dir: /etc/cue/zipline/conversion-templates
target:
publications:
- text: Tomorrow Online # Text to show in a label
value: tomorrow-online # Name of the publication
containers:
- text: Regular News Story
value: regular-news-story
# Map between CUE container fields and DC-X document fields
fields:
- name: Headline
meta: com.escenic.container.slug
content-types:
- text: Storyline
value: storyline
# Map between CUE content type fields and DC-X document fields
fields:
- name: Title
meta: title
# Map between CUE story element type fields and DC-X document fields
story-elements:
- value: headline # Name of the story element type
fields:
- name: Headline
meta: headline
- value: lead text
fields:
- name: SubHeadline
meta: lead-text
extract-substrings: False # Attribute used to separate out a DC-X
XHTML field value
- value: paragraph

Copyright © 2015-2023 Stibo DX A/S Page 153


https://palletsprojects.com/p/jinja/

CUE Tech Guide

fields:
- name: body
meta: paragraph
extract-substrings: True
binary-content-types:
- text: Picture
value: picture
# Map between CUE binary content type fields and DC-X image fields
fields:
- name: ImageCaption
meta: caption
- name: display title
meta: title
summary-fields: # Binary content type summary fields
- name: ImageCaption
meta: caption
- text: Binary
value: binary
fields:
- name: display title
meta: title
summary-fields:
- name: display title
meta: title
- text: Graphics
value: graphics
fields:
- name: ImageCaption
meta: caption
- name: display title
meta: title
summary-fields:
- name: ImageCaption
meta: caption
# Map between DC-X text formatters and CUE storyline annotations
annotations:
- name: bold # Name of the css class that DC-X uses to format a text in story
meta: bold # Name of the annotation that CUE uses to annotate a text in
storyline
- name: italic
meta: italic
- name: underline
meta: underline

The overall purpose of this section is to define:

«  Which CUE publications DC-X wire stories may be imported to

«  Which containers DC-X wire stories may be imported to

« Mappings between DC-X fields and the fields / story elements in CUE containers and content types
« Mappings between DC-X character styles and CUE annotations

The dex-converters/wire/target property contains the following settings:

publications
Contains an array of entries, one for each supported publication. Each array entry can contain
the following properties:

Copyright © 2015-2023 Stibo DX A/S Page 154



CUE Tech Guide

text
The display name (label) of a CUE publication.

value
The internal name of the publication.

containers
An array of entries, one for each container that may be used for imported wire stories.
Each array entry can contain the following properties:

text
The display name (label) of the container.

value
The internal name of the container.

fields
An array of entries, one for each container field that is to be used. Each array entry
can contain the following properties:

name
The name of a DC-X field to be imported.

meta
The name of the container field into which the content of name is to be
imported.

content-types
An array of entries, one for each content type that may be used for imported wire stories.
Each array entry can contain the following properties:

text
The display name (label) of the content type.

value
The internal name of the content type.

fields
An array of entries, one for each content type field that is to be used. Each array
entry can contain the following properties:

name
The name of a DC-X field to be imported.

meta
The name of the content type field into which the content of name is to be
imported.

story-elements
An array of entries, one for each story element in this content type that is to be
used. Each array entry can contain the following properties:

value
The internal name of the story element.

fields
An array of entries, one for each story element field that is to be used. Each
array entry can contain the following properties:

name
The name of a DC-X field to be imported.

Copyright © 2015-2023 Stibo DX A/S Page 155



CUE Tech Guide

meta
The name of the story element field into which the content of name is
to be imported.

extract-substrings
If the source DC-X field contains rich text (XHTML), then setting this
property to True, instructs CUE Zipline to extract the text content of each
block element in the source field and create a separate story element of this
type for each of them. In other words, you can use it to transform a sequence
of p elements in the source field to a corresponding sequence of paragraph
story elements in CUE.

binary-content-types
An array of entries, one for each binary content type that may be used for imported wire
stories. Each array entry can contain the following properties:

text
The display name (label) of the content type.

value
The internal name of the content type.

fields
An array of entries, one for each content type field that is to be used. Each array
entry can contain the following properties:

name
The name of a DC-X field to be imported.

meta
The name of the content type field into which the content of name is to be
imported.

summary-fields
An array of entries, one for each summary field that is to be used. Each array entry
can contain the following properties:

name
The name of a DC-X field to be imported.

meta
The name of the summary field into which the content of name is to be
imported.

annotations
An array of entries containing mappings between DC-X CSS classes and CUE storyline
annotations. Note that these mappings are global, not publication-specific. Each array entry
must contain the following properties:

name
The name of a CSS class used in DC-X

meta
The name of a corresponding CUE annotation.

Copyright © 2015-2023 Stibo DX A/S Page 156



CUE Tech Guide

5.3 Login Credentials

The DC-X extension uses the credentials supplied when you log in to CUE as login credentials for DC-
X as well. You must therefore use the same username/password combinations in both systems for the
DC-X extension to work.

5.4 Using The Main DC-X Integration

Once the DC-X integration is correctly installed and configured, DC-X appears as a secondary search
panel on the left side of the CUE window:

®@0® M cue
C (@ NotSec

==t Apps @ cue-branches

<+ Offline Mode Language

Storyline

When expanded, the DC-X panel looks and behaves like the main CUE search panel with the following
differences:

« It offers access to DC-X assets, rather than ordinary CUE content

» The search and filtering options reflect the search and filtering functionality provided by DC-X

Copyright © 2015-2023 Stibo DX A/S Page 157



CUE Tech Guide

Each DC-X asset is represented in the panel search results by an entry consisting of a thumbnail
preview image, a title, description, owner and a series of DCX flags describing attributes of the asset
such as its resolution, whether it is an online-only asset, whether it is expensive and so on:

Sankt Peter Ording
Sankt Peter Ording im Mai

@ dpi

By None

To use DC-X assets in a publication, you simply drag them from the search results list and drop them
in an appropriate location in a content item, in exactly the same way as you would drop images and
videos selected from the ordinary search panel. When an asset is dropped in this way, a content item of
the appropriate type is created for it, and a copy of the binary object is stored in the Content Store. The
copied object is marked to indicate it is a DC-X asset, and the new content item is set to a state defined
in the DC-X drop trigger configuration (or draft if the drop trigger configuration does not specify a
state). If the dropped asset has been dropped before and already exists as a content item in CUE, then
that content item is used and its state is not modified.

If you have a DC-X client running on the same machine as CUE, you can also drag assets directly
from the DC-X client into CUE. Assets added in this way behave in exactly the same way as assets
dragged from the DC-X search panel in CUE.

Information about the use of DC-X assets in CUE is reported back to DC-X. The usage information is
recorded in DC-X as follows:

» Assets related to a published story are assigned a usage entry with the state Published, along with
the publication date and URL of the story.

« Assets related to a story that is not published (or to the working copy of a published story) are
assigned a usage entry with the state Planned.

When assets are removed from a story, the corresponding usage entry is removed from DC-X. This
usage information is displayed in the DC-X Usage tab.

Depending on how the system has been configured, video and graphic content uploaded to CUE from
other sources may be automatically passed on to DC-X for storage. The system can be configured to
only store certain content types in DC-X, and only if they are added to specific content items. In additi

on, they may not actually be uploaded to DC-X until they reach a specified state in the workflow.

CUE's General Info metadata panel section contains a DAM info field that shows information about
the current status of content items that meet the requirements for upload to DC-X. It can contain the
following status messages:

Upload not initiated
The content item has not yet reached the workflow state that triggers upload.

Uploading
Upload is in progress.

Copyright © 2015-2023 Stibo DX A/S Page 158



CUE Tech Guide

error-code
Upload failed.

dcx-document-id (a long random string)
Upload has succeeded.

5.5 Using The DC-X Wire Integration

The DC-X wire integration makes it possible to use DC-X as a source of wire stories for use in CUE
publications. Wire stories managed by DC-X can be browsed and searched from CUE, and selected
for use in CUE publications. Selected wire stories are imported into CUE and can then be edited and
published to multiple channels in the normal way.

If CUE and CUE Zipline have been configured to support the use of DC-X wires, then you will see a
button for a DC-X Wires panel on the left side of the CUE window:

+ Network Language Upload Dev Tools

0

B 0

The bookseller of Tunis: one man's fight to preserve relic of bygone age

Sunk within an obscure street near the city’s medina, there is little to distin

T
oo

v None

L]

Celeb Couples With Major Age Differences

When expanded, the DC-X Wires panel looks and behaves like the main CUE search panel with the
following differences:

« It offers access to wire stories in DC-X, rather than ordinary CUE content

« The search and filtering options reflect the search and filtering functionality provided by DC-X
You can access a listed wire story in three different ways:

« Double-click to open it in DC-X
« Press the space bar to display a quick view of the story in CUE
« Right click to display the context menu and select to import the story into CUE.

Copyright © 2015-2023 Stibo DX A/S Page 159



CUE Tech Guide

Selecting usually displays the following dialog, allowing you to choose what kind of story to
create, and in which publication:

Use Wire x

Publications

Tomorrow Online

Regular News
Story
Search for ather option:

Regular News Story

Cancel

This dialog is effectively the same as the dialog, and works in the same way. The values
available for selection may, however, be more constrained - you may not be able to import wires into
all of the publications that you are allowed to create stories in, for example, and you may not have the
same choice of containers/content types. The values available for each of these options are determined
by the configuration settings specified in the dex-converters/wire/target section of the CUE
Zipline configuration file (see section 5.2.5.3).

The Use Wire Service dialog shown above is only displayed if it is actually needed (that is, if there
are actual choices to be made). If the configuration in the dex-converters/wire/target
section of the CUE Zipline configuration file only specifies one publication and container type,
then it will not be displayed and the wire story will be imported to the configured destination
immediately. Note also that the option in the dialog will be automatically set to your
default publication if possible (that is, of you have specified a default publication in your personal
preferences and if that publication is one of the publications specified in the CUE Zipline wire
service configuration).

Any binary resources such as images or videos that are referenced in the wire story are imported along
with it as related content.

Once a wire story has been imported it can be used in exactly the same way as any other CUE content
item.

Copyright © 2015-2023 Stibo DX A/S Page 160



