
CUE

Tech Guide
3.18.4-5

Table of Contents

1 Installing CUE.. 5

2 Configuring CUE..7

2.1 Mandatory Tasks.. 7

2.1.1 Basic CUE Configuration...7

2.1.2 Nginx Configuration... 8

2.1.3 Web Service CORS Configuration.. 9

2.2 Optional Tasks..10

2.2.1 Third-Party Authentication... 10

2.2.2 Create new Dialog...12

2.2.3 Heading Levels..13

2.2.4 Automatic div Removal..13

2.2.5 Content Type Selection for Binaries... 14

2.2.6 Defining Custom Icons.. 15

2.2.7 Metadata Panel Sections.. 15

2.2.8 CUE Composer Integration for Storylines... 18

2.2.9 Smart Quotes.. 21

2.2.10 Spelling Checker... 23

2.2.11 Semantic Shortcut Key Combination...25

2.2.12 Content Creation Shortcuts... 26

2.2.13 The Publish Shortcut...27

2.2.14 Content Card Date Type... 27

2.2.15 Storyline Symbol Insertion...28

2.2.16 Section Page Metadata Panel Width.. 29

2.2.17 Search Filters.. 30

2.2.18 Dashboards (Content Store only)..32

2.2.19 Asset Picker Custom Search Filters (Content Store only).....................................33

2.2.20 Autosave Interval...34

2.2.21 Quick View...34

2.2.22 HTML Source Editing.. 35

2.2.23 Cleaning up Pasted Content... 35

2.2.24 CUE Print Access for Freelancers.. 36

2.2.25 Teaser Anchors in Section Page Previews...36

2.2.26 Metadata Panel Section List Length... 37

2.2.27 Default Tag Relevance..38

2.2.28 Sections Side Panel Preview.. 38

2.2.29 Storyline Metrics (Content Store only).. 38

2.2.30 Preview.. 43

2.2.31 Inline Link Target Window Default.. 44

2.2.32 Date Picker Default Time.. 45

2.2.33 CUE Print Handling in Create New Dialog..45

2.2.34 Access Token Refreshment Timing.. 45

2.2.35 Environment Visualization... 45

2.2.36 Disabling Search-As-You-Type... 46

2.2.37 Enabling User Tracking...46

2.2.38 Automated Curation With Sophi..47

3 Installing and Configuring Plug-ins..51

3.1 cue-content-duplication-enrichment-service... 52

3.1.1 Installing cue-content-duplication-enrichment-service... 52

3.1.2 Configuring cue-content-duplication-enrichment-service...52

3.2 cue-spellcheck.. 54

3.2.1 Installing cue-spellcheck..54

3.2.2 Configuring cue-spellcheck... 54

3.2.3 Starting cue-spellcheck... 55

3.2.4 Specifying Publication Language/Enabling the Spelling Checker........................... 56

4 Extending CUE.. 57

4.1 Web Components...57

4.1.1 Creating a Web Component..59

4.1.2 The CUE Web Component API.. 60

4.1.3 The CUE Native Controls..139

4.2 Enrichment Services...145

4.2.1 Configuring Enrichment Services in CUE... 146

4.2.2 Creating an Enrichment Service... 153

4.2.3 Multi-select Enrichment Services.. 156

4.2.4 Some Examples.. 157

4.2.5 Learning More About Enrichment Services...160

4.3 Drop Resolvers...160

4.3.1 Configuring Drop Resolvers in CUE... 160

4.3.2 Drop Resolver Parameters..162

4.3.3 Drop Resolver Return Values... 162

4.4 URL-based Content Creation... 163

4.4.1 Content Creation URL Structure... 163

4.4.2 Example Script.. 166

4.5 URL-based Content Editing..167

4.5.1 Content Editing URL Structure..167

4.6 Logout Triggers...168

4.7 CUE Safe Mode... 168

4.8 Custom Capabilities (Content Store only).. 169

5 DC-X Integration.. 171

5.1 DC-X Drop Resolver Installation.. 171

5.2 DC-X Extension Configuration..171

5.2.1 Endpoint Configuration.. 172

5.2.2 Side Panel Configuration...172

5.2.3 Drop Resolver Configuration... 173

5.2.4 Content Type Configuration.. 174

5.2.5 Zipline Configuration..174

5.3 Login Credentials..181

5.4 Using The Main DC-X Integration.. 181

5.5 Using The DC-X Wire Integration.. 183

CUE Tech Guide

1 Installing CUE

CUE requires the use of an SSE Proxy to manage the delivery of Server-sent Events from the CUE
Content Store to CUE clients. This means that an CUE SSE Proxy must have been installed and
configured to manage SSE for the Content Store, and the Content Store must have been configured
to direct SSE connection requests to the SSE Proxy. For general information on how to install
and configure an SSE Proxy, see the SSE Proxy documentation. For specific guidance on how to
configure the Content Store and the SSE Proxy to work together with CUE, see Configure an SSE
Proxy Connection for CUE.

CUE is available as a standard Debian installation package, making installation on Ubuntu or other
Debian-based Linux systems very straightforward. CUE is a standalone web application. Although it
needs to be connected to an CUE Content Store and/or a CCI Newsgate back end, it does not need to
be co-located with either of them. It can be installed on the same server as a Content Store instance,
but it does not need to be. An application server such as Tomcat is not required to serve CUE. Since it
is a pure HTML/Javascript application, a web server such as nginx or Apache is sufficient.

A note about version code names

CUE and all related applications (CUE Content Store, CUE Print, Content Store plug-ins and so on)
are released on a synchronized schedule where all product versions in a given release are known to
work well together. Only these approved version combinations are supported. Each set of compatible
product versions is identified by a code name, and during installation you can use this code name
instead of the individual product's version number, thereby simplifying the installation process.

In the case of CUE and other Linux applications installed on Ubuntu using apt, the code name is
actually the name of a repository containing compatible versions of all products. This means that in
order to ensure version compatibility, all you need to do is add the name of the required repository to
your /etc/apt/sources.list.d/escenic.list file. Once you have done this you do not need
to specify any version numbers when installing individual packages - apt will just install the latest
maintenance release from that repository.

Note that code names cannot be used in this way on Red Hat installations, where the application
packages to be installed must still be identified by their version numbers. This is also the case for
CUE Print.

The code name for CUE 3.18.4-5 is silicon. To find the correct CUE Print version to install for the
silicon release, check the CUE Print release notes.

Installation procedure

The instructions given here are based on the use of an nginx web server, running on Ubuntu.

To install CUE:

1. Log in via SSH from a terminal window.

2. Switch user to root:

$ sudo su

Copyright © 2015-2023 Stibo DX A/S Page 5

http://docs.escenic.com/sse-proxy.html
http://docs.escenic.com/ece-install-guide/7.18/configure_an_sse_proxy_connection_for_cue.html
http://docs.escenic.com/ece-install-guide/7.18/configure_an_sse_proxy_connection_for_cue.html
http://customer.ccieurope.com/documentation/release-notes/cci-newsgate.aspx

CUE Tech Guide

3. If necessary, download and set the Escenic apt repository key:

curl --silent https://user:password@apt.escenic.com/repo.key | apt-key add -

where user and password are your Stibo DX download credentials (the same ones you use to
access the Stibo DX Maven repository). If you do not have any download credentials, please
contact Stibo DX support.

4. Add the current version repository name to your list of sources.

echo "deb https://user:password@apt.escenic.com silicon main non-free" >> /etc/
apt/sources.list.d/escenic.list

5. You need to install version 1.7.5 or higher of nginx. The version available in the Ubuntu 14.04
repositories is too old, so in order to ensure that you install a new enough version, you need to
add a repository containing a more recent version:

add-apt-repository ppa:nginx/stable

6. Update your package lists:

apt-get update

7. Download and install CUE:

apt-get install cue-web

8. Download and install nginx

apt-get install nginx

Copyright © 2015-2023 Stibo DX A/S Page 6

mailto:support@escenic.com

CUE Tech Guide

2 Configuring CUE

In order to complete the installation of CUE, you must:

• Carry out a basic configuration of CUE itself and the nginx web server that serves the CUE
application.

• Configure nginx to support cross-origin communication between CUE and the CUE Content Store's
web service

These mandatory configuration tasks are both described in section 2.1.

There are in addition a number of more or less optional configuration tasks that you may need to carry
out, depending on your specific requirements. These tasks are described in section 2.2.

2.1 Mandatory Tasks
The configuration tasks described in this section are required in order to get CUE up and running.

2.1.1 Basic CUE Configuration

CUE configuration involves configuring CUE itself, and also configuring the nginx web server that
serves the CUE application.

The actual CUE configuration consists of editing YAML format configuration files, identified by the file
type extension .yml. The delivered system includes a number of such configuration files containing
CUE's default configuration settings. These files are located in the /etc/escenic/cue-web folder.

The /etc/escenic/cue-web folder also contains a file called config.yml.template, containing
the property settings that you always need to set when installing CUE. To use this file you rename it to
config.yml and then edit the contents.

To configure CUE:

1. If necessary, switch user to root.

$ sudo su

2. Copy /etc/escenic/cue-web/config.yml.template to config.yml:

cp /etc/escenic/cue-web/config.yml.template /etc/escenic/cue-web/config.yml

3. Open the new /etc/escenic/cue-web/config.yml for editing. For example

nano /etc/escenic/cue-web/config.yml

4. Uncomment and set the required endpoint parameters (which you will find at the top of the file):

endpoints:
 escenic: "http://escenic-host:81/webservice/index.xml"

Copyright © 2015-2023 Stibo DX A/S Page 7

CUE Tech Guide

 newsgate: "http://newsgate-host/newsgate-cf/"

where:

• escenic-host is the IP address or host name of the Content Store CUE is to provide access to

• newsgate-host is the IP address or host name of the CCI Newsgate system CUE is to provide
access to. If no CCI Newsgate system is present, then do not uncomment the newsgate: line.

5. If your CUE configuration makes use of an Escenic-CCI Newsgate bridge, then you will need to
add a third line under endpoints:

endpoints:
 escenic: "http://escenic-host:81/webservice/index.xml"
 newsgate: "http://newsgate-host/newsgate-cf/"
 bridge: "http://bridge-host:7001/ngece-bridge/"

where bridge-host is the IP address or host name of an Escenic-CCI Newsgate bridge. (A bridge
is a service capable of converting Escenic content to Newsgate format, and is required to support
Newsgate write-to-fit functionality in CUE.)

6. Save the file.

7. Enter:

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the Content Store web service URL you specified in step 3.

You now need to configure the nginx web server to serve the CUE application, as described in section
2.1.2.

2.1.2 Nginx Configuration

To configure nginx:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/nginx/sites-available/default for editing, and replace the entire contents
of the file with the following:

server {
 listen 81 default;
 include /etc/nginx/default-site/*.conf;
}

3. Create a new folder to contain your site definitions:

mkdir /etc/nginx/default-site/

4. Add three files to the new /etc/nginx/default-site/ folder, called cue-web.conf and
webservice.conf:

touch /etc/nginx/default-site/cue-web.conf
touch /etc/nginx/default-site/webservice.conf
touch /etc/nginx/conf.d/request-entity-size-limit.conf

5. Open /etc/nginx/default-site/cue-web.conf for editing and add the following
contents:

location /cue-web/ {
 alias /var/www/html/cue-web/;
 expires modified +310s;

Copyright © 2015-2023 Stibo DX A/S Page 8

CUE Tech Guide

}

Depending on the version of nginx that you have installed, the alias specified in cue-
web.conf may need to be set to /var/www/cue-web/ instead of /var/www/html/cue-
web/.

6. Open /etc/nginx/default-site/webservice.conf for editing and add the contents
described in section 2.1.3.

7. Open /etc/nginx/conf.d/request-entity-size-limit.conf for editing and add the
following contents:

Disable default 1Mb limit of PUT and POST requests.
client_max_body_size 0;

(If you do not add this setting, then nginx will not allow larger files such as images and videos to
be uploaded to CUE.)

You will now need to set up cross-origin communication between CUE and the Content Store web
service as described in section 2.1.3.

2.1.3 Web Service CORS Configuration

Your cue-web application is now running on the nginx default port, 81. In order to be able to run
correctly it needs to be able to send requests to the CUE Content Store's web service. This web service
may possibly be running on a different host in a different domain. Even if it is running on the same
host as nginx, it will most likely be listening on port 8080 (Tomcat's default port). This means that by
default any requests from the cue-web application to the Content Store web service will be rejected as
cross-origin scripting exploits.

You can, however, enable cross-origin communication between the cue-web application and the
Content Store web service by setting up an nginx proxy for the web service that redirects requests to
the actual web service and also adds the CORS headers needed to ensure that the requests will not be
rejected.

Here is an example of a suitable /etc/nginx/default-site/webservice.conf:

location ~ "/(escenic|studio|webservice|webservice-extensions)/(.*)" {
 if ($http_origin ~* (https?://[^/]*\.dev\.my-cue-domain\.com(:[0-9]+)?)$) {
 set $cors "true";
 }
 if ($request_method = 'OPTIONS') {
 set $cors "${cors}options";
 }
 if ($request_method = 'GET') {
 set $cors "${cors}get";
 }
 if ($request_method = 'HEAD') {
 set $cors "${cors}get";
 }
 if ($request_method = 'POST') {
 set $cors "${cors}post";
 }
 if ($request_method = 'PUT') {
 set $cors "${cors}post";
 }
 if ($request_method = 'DELETE') {
 set $cors "${cors}post";

Copyright © 2015-2023 Stibo DX A/S Page 9

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

CUE Tech Guide

 }
 if ($cors = "trueget") {
 add_header "Access-Control-Allow-Origin" "$http_origin" always;
 add_header "Access-Control-Allow-Credentials" "true" always;
 add_header "Access-Control-Expose-Headers" "Link,X-ECE-Active-
Connections,Location,ETag,Allow" always;
 }
 if ($cors = "truepost") {
 add_header "Access-Control-Allow-Origin" "$http_origin" always;
 add_header "Access-Control-Allow-Credentials" "true" always;
 add_header "Access-Control-Expose-Headers" "Link,X-ECE-Active-
Connections,Location,ETag" always;
 }
 if ($cors = "trueoptions") {
 add_header 'Access-Control-Allow-Origin' "$http_origin";
 add_header 'Access-Control-Allow-Credentials' 'true';
 add_header 'Access-Control-Max-Age' 1728000;
 add_header 'Access-Control-Allow-Methods' 'GET, POST, HEAD, OPTIONS, PUT,
 DELETE';
 add_header 'Access-Control-Allow-Headers' 'Authorization,Content-
Type,Accept,Origin,User-Agent,DNT,Cache-Control,X-Mx-ReqToken,Keep-Alive,X-Requested-
With,If-Modified-Since,If-Match,If-None-Match,X-Escenic-Locks,X-Escenic-media-
filename,X-Escenic-home-section-uri,X-Escenic-Container-Destinations';
 add_header 'Content-Length' 0;
 add_header 'Content-Type' 'text/plain charset=UTF-8';
 return 204;
 }
 proxy_set_header Host $http_host;
 proxy_pass http://127.0.0.1:8080;
}

In the origin filter at the top of the file:

 if ($http_origin ~* (https?://[^/]*\.dev\.my-cue-domain\.com(:[0-9]+)?)$) {
 set $cors "true";
 }

you must replace my-cue-domain\.com with the actual domain name of your CUE installation.

2.2 Optional Tasks
The configuration tasks described in this section are optional. Whether or not they are necessary
depends on your system requirements.

Most of the configuration tasks involve editing YAML configuration files in the CUE configuration
folder (/etc/escenic/cue-web). In some cases, however, it is also necessary to make server-side
configuration changes. This usually involves editing XML files called Content Store resources.

2.2.1 Third-Party Authentication

Both CUE Content Store and CCI Newsgate can be configured to allow third-party authentication
of users. This lets you log in to CUE using your Google or Facebook ID, for example, rather than by
entering a CUE-specific user name ad password.

In order to be able to make use of third-party authentication in CUE:

Copyright © 2015-2023 Stibo DX A/S Page 10

CUE Tech Guide

• The Content Store/CCI Newsgate back-end system(s) must have been configured to allow third-
party authentication. For details of how to enable third-party authentication in CUE, see Third-
Party Authentication.

• CUE itself must be configured to display the UI for the third-party authentication methods that
have been enabled.

CUE supports two third-party authenticators – Google and Facebook.

2.2.1.1 Google Authentication

If the relevant back-end system(s) have been set up to support Google Authentication, then you can
configure CUE support by adding a YAML configuration file to the CUE configuration folder (/etc/
escenic/cue-web).

When you are configuring third-party authentication for the Content Store as described in Configure
OAuth Authentication, you need to add a CUE redirect URI to the Authorized redirect URI
in step 16. The URI must be your CUE URI followed by /oauth_callback.html: for example
http://your-cue-host/cue-web/oauth_callback.html.

Your configuration file must contain the following settings:

oauth:
 name: "Google"
 label: "Log in with Google account"
 authURI: "https://accounts.google.com/o/oauth2/auth
 scope: "email"
 clientId: "google-client-id"

where google-client-id is the client ID you created in the steps described above.

When setting up Google authentication for the Content Store, you create two client IDs – one for
desktop clients and one for web clients. Make sure that you use the web client ID for configuring
CUE.

When you have saved this file, enter (as the root user):

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the changes you have made. The CUE login page will now include a Log in
with Google account option.

2.2.1.2 Facebook Authentication

If the relevant back-end system(s) have been set up to support Facebook Authentication, then you can
configure CUE support by adding a YAML configuration file to the CUE configuration folder (/etc/
escenic/cue-web). The file must contain the following settings:

oauth:
 name: "Facebook"
 label: "Log in with Facebook account"
 authURI: "https://graph.facebook.com/oauth/authorize"
 scope: "email"
 clientId: "facebook-client-id"

Copyright © 2015-2023 Stibo DX A/S Page 11

http://docs.escenic.com/ece-server-admin-guide/7.18/third_party_authentication.html
http://docs.escenic.com/ece-server-admin-guide/7.18/third_party_authentication.html
http://docs.escenic.com/ece-server-admin-guide/7.18/create_credentials_content_studio.html
http://docs.escenic.com/ece-server-admin-guide/7.18/create_credentials_content_studio.html

CUE Tech Guide

where facebook-client-id is the the web client ID you created when configuring access to the back-
end system(s) (see Configure OAuth Authentication).

When setting up Facebook authentication for the Content Store, you create two client IDs – one for
desktop clients and one for web clients. Make sure that you use the web client ID for configuring
CUE.

When you have saved this file, enter (as the root user):

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the changes you have made. The CUE login page will now include a Log in
with Facebook account option.

2.2.2 Create new Dialog

The Create new dialog (shown above) is configurable: you can specify which content types are to be
displayed as favorites in the top half of the dialog. There is space for a maximum of four favorites: all
other options must be selected using the search field in the bottom half of the dialog.

To specify your required favourites:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/30-new-content-defaults.yml for editing. For example

nano /etc/escenic/cue-web/30-new-content-defaults.yml

3. Find the newContentDefaults parameter:

newContentDefaults:
- type: "story"
 icon: "story"
 - type: "picture"
 icon: "picture"
 - type: "video"
 icon: "video"
 - type: "storyfolder"
 icon: "storyfolder"
 - type: "gallery"
 icon: "picture"

4. Modify the list of content type/icon pairs to meet your requirements. If you use CUE to edit
several publications that have different content types, then you may want to have more than
four content types in the list even though a maximum of four can be displayed in the dialog. If

Copyright © 2015-2023 Stibo DX A/S Page 12

http://docs.escenic.com/ece-server-admin-guide/7.18/create_credentials_content_studio.html

CUE Tech Guide

a publication has no video content type, for example, then the Create new dialog will display
story, picture, storyfolder and gallery from the above list.

Note that if you create custom content type icons as described in section 2.2.6, then any icon
settings made in the content-type resource will override icon settings made here.

5. Save the file.

6. Enter:

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the changes you have made.

2.2.3 Heading Levels

The rich text editor's formatting tool bar has a Heading button that you can use to insert HTML
heading elements h1, h2 h3 and so on. By default the button offers h2 as the default selection, with
headings h1 and h3 - h6 as options in a drop-down menu:

You can, however, change this default configuration as follows:

1. If necessary, switch user to root.

$ sudo su

2. Open etc/escenic/cue-web-3.18/plugins/internal/EscenicHeading/
EscenicHeading.yml for editing. For example:

nano etc/escenic/cue-web-3.18/plugins/internal/EscenicHeading/EscenicHeading.yml

3. To change the default heading level, edit the defaultHeadingLevel property:

defaultHeadingLevel: 2

4. To change the contents of the drop-down menu, edit the headingLevels property:

headingLevels: "1, 2, 3, 4, 5, 6"

5. Save the file.

6. Enter:

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the changes you have made.

2.2.4 Automatic div Removal

CUE can be configured to automatically remove HTML div elements from text pasted into rich text
fields. This functionality is useful for some customers, but not for others and is therefore disabled by
default. To enable it:

Copyright © 2015-2023 Stibo DX A/S Page 13

CUE Tech Guide

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example

nano /etc/escenic/cue-web/config.yml

3. Add the following setting:

removeDivsAutomatically: true

4. Save the file.

5. Enter:

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the changes you have made.

You can disable the functionality by setting removeDivsAutomatically to false.

2.2.5 Content Type Selection for Binaries

When a binary file is dropped in CUE, a content item is automatically created to contain it. In order to
be able to do this, CUE searches for a content type that is configured to handle the binary file's MIME
type. If some MIME types can be handled by more than one content type, then by default CUE uses the
first one it finds. You can, however configure CUE to allow the user to choose the content-type.

To configure this kind of content type selection:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example

nano /etc/escenic/cue-web/config.yml

3. Add the following settings:

contentTypeSelection:
 enabled: true

4. Save the file.

5. Enter:

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the changes you have made.

If JPEG file types can be handled by three different content types, picture, graphic and special,
then users who drop a JPEG file into CUE will now be prompted to select which of the three content
types CUE should use.

If you don't want all available content types to be offered as options, you can exclude some by
including an ignoreContentTypes property in the configuration file:

contentTypeSelection:
 enabled: true
 ignoreContentTypes: ["special"]

Copyright © 2015-2023 Stibo DX A/S Page 14

CUE Tech Guide

ignoreContentTypes accepts an array of content type names, so you can exclude multiple content
types from the user prompt if you wish. If you exclude all content types except one, then no prompt is
displayed in CUE since the user no longer has a choice.

2.2.6 Defining Custom Icons

Icons are widely used to represent different types of objects in CUE:

• Content items

• Publications

• Story elements in storylines

• Workflow states

• Dashboards

• Macros

The icon used to represent a content item varies according to its type: stories are represented by
document icons, pictures by image icons, and so on. Similarly, paragraph, image and table story
elements are all represented by different icons, as are different publications, workflow states,
dashboards and macros. A number of standard icons are supplied with CUE for use with default
publications, content types, story element types, states and so on. It is of course possible to re-
use some of these icons for your own content types, story element types and so on, but it is not
recommended – you should define your own custom icons.

All of the above object types are defined in Content Store resource files of one kind or another as part
of the publication definition process described in the Content Store Publication Design Guide.

In general, defining an icon for one of the above object types involves creating the icon itself (an
image file, for example) and then adding a ui:icon element that references the image to the object
type's definition in the appropriate Content Store resource file. Suppose, for example, that you want
to add an icon to your "Long Story" content type. In this case you would need to insert a ui:icon
element as a child of the <content-type name="longstory"> element in your publication's
content-type resource. Similarly, for a "Special Para" story element type, you would need to insert
a ui:icon element as a child of the <story-element-type name="specialpara"> element in
your specialpara.xml story element type resource.

The details of what kind of image you should create and how you should use the ui:icon element
vary between the above object types. In some cases only .PNG images may be used as icons, whereas in
other cases more freedom is allowed (.SVG files, inline SVG code, Unicode characters and so on). For
detailed instructions, see the Content Store Publication Design Guide and the reference description of
the ui:icon element.

2.2.7 Metadata Panel Sections

You can control which sections appear in the metadata panel on the right side of the CUE window
(and the order in which they appear) by adding metadata-panel elements to your content type
definitions in the Content Store content-store resource. For general information about the
content-store resource and how to define CUE content types, see The content-type Resource.

Using the metadata-panel element, you can define what sections are to be displayed in
the metadata panel for each content type in a publication, and the order in which they are to
appear. The metadata-panel element belongs to a special CUE-specific namespace: http://

Copyright © 2015-2023 Stibo DX A/S Page 15

http://docs.escenic.com/ece-pub-design-guide/7.18/
http://docs.escenic.com/ece-pub-design-guide/7.18/
http://docs.escenic.com/ece-resource-ref/7.18/interface_hints.html
http://docs.escenic.com/ece-pub-design-guide/7.18/the_content_type_resource.html

CUE Tech Guide

xmlns.cuepublishing.com/configuration. Before you add any metadata-panel elements to
your content-type resource, therefore, you should declare this namespace in the file's root element,
and define a prefix for it (cue is recommended). For example:

<content-types xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 xmlns:doc="http://xmlns.vizrt.com/2010/documentation"
 xmlns:media="http://xmlns.escenic.com/2013/media"
 xmlns:video="http://xmlns.escenic.com/2010/video"
 xmlns:livecenter="http://xmlns.escenic.com/2015/live-center"
 xmlns:cci="http://cci/extension/integration"
 xmlns:cue="http://xmlns.cuepublishing.com/configuration"
 version="4">
 ...
</content-types>

Once you have done this, you can control the metadata panel sections displayed for items of a
particular content type by adding a cue:metadata-panel element as a child of its defining
content-type element. For example:

<content-type name="story">
 ...
 <cue:metadata-panel>
 my.relation-headshot
 cue.general-info
 my.extra-info
 cue.section
 ...
 </cue:metadata-panel>
 ...
</content-type>

The content of the metadata-panel element must be a white space-separated list of metadata panel
section names. Only the sections you specify in the list will be displayed for content items of this
type, and they will be displayed in the order specified. Content types for which you do not specify a
cue:metadata-panel element will get the default metadata panel sections, displayed in the default
order.

The built-in sections must be specified using their CUE tag names, all of which start with the
prefix "cue.". Most of the built in sections are omitted from the above example to keep it short.
For a complete list of all the built-in metadata sections and their tag names, see section 2.2.7.1. The
tag names of any metadata sections belonging to custom web components are defined in the web
component configurations, as described in section 4.1.2.7.1, for example.

2.2.7.1 Metadata Section Tag Names

CUE metadata panel sections are identified by tag names. All the built-in sections have tag names
that start with the characters "cue.". To avoid possible future name clashes, you should choose a
different prefix when naming any custom metadata sections you create.

CUE online sections

UI Label Tag name

Schedule cue.schedule

Copyright © 2015-2023 Stibo DX A/S Page 16

CUE Tech Guide

UI Label Tag name

Authors cue.authors

General info cue.general-info

Related cue.related

Section cue.section

Tags cue.tags

Usages cue.usage

Measurements cue.online-measurements

Metrics cue.online-metrics

Semantic analysis (if CUE Semantic is installed) cue.semantic

CUE Print sections

UI Label Tag name

Properties cue.story-folder

General info cue.text-general-info

Package Properties cue.text-package-properties

Package Properties (for storylines) cue.print-storyline-package-
properties

Proofreading cue.text-proof-state

Related cue.text-related

Related (for storylines) cue.print-storyline-related

Text Properties cue.text-text-properties

Assignment cue.assignment

Assignment metadata cue.assignment-usage

Measurements cue.print-measurements

Shared sections

UI Label Tag name

Versions cue.versions

Copyright © 2015-2023 Stibo DX A/S Page 17

CUE Tech Guide

2.2.8 CUE Composer Integration for Storylines

It is possible to open a print story in CUE Composer directly from CUE. No configuration is required
to make this integration available for rich text-based stories but for storyline stories, you need to
explicitly enable it by including a cue:integration-target element in the storyline's content type
definition. This element must contain the value cue-print.

The cue: namespace prefix must be declared (usually in the content-type resource's root element as
follows:

<content-types xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 xmlns:doc="http://xmlns.vizrt.com/2010/documentation"
 xmlns:media="http://xmlns.escenic.com/2013/media"
 xmlns:video="http://xmlns.escenic.com/2010/video"
 xmlns:livecenter="http://xmlns.escenic.com/2015/live-center"
 xmlns:cci="http://cci/extension/integration"
 xmlns:cue="http://xmlns.cuepublishing.com/configuration"
 version="4">
 ...
</content-types>

The cue:integration-target element must then be included in the content type definitions of all
the storyline content types that you want to be able to open in CUE Composer. For example:

<content-type name="storyline">
 ...
 <cue:integration-target>cue-print</cue:integration-target>
 ...
</content-type>

If your installation includes multiple CUE Print instances (test, staging, production for example),
they must all be configured with different system names. Otherwise this feature may open stories in
the wrong instance of CUE Composer.

For storylines that are configured in this way, the following additional CUE Print-related features are
available:

• CUE Print-driven locking of storylines and story elements

• CUE Print measurement data, including "write to fit" line counts

These features are described in the following sections. Both features require the addition of cue:cue-
print elements to the story element types used in your storylines. A cue:cue-print element
establishes a mapping between the story element type to which it belongs and the story element type's
target CUE Print element tag:

<story-element-type
 xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 xmlns:cue="http://xmlns.cuepublishing.com/configuration"
 name="headline">
 ...
 <cue:cue-print elementTag="Headline">
 ...
</story-element-type>

Copyright © 2015-2023 Stibo DX A/S Page 18

CUE Tech Guide

The above example indicates that the headline story element type is represented by the Headline
element tag in CUE Print. Note that the cue: namespace prefix needs to be declared in the root
element of any story element definition to which you add a cue:cue-print element (as highlighted
in the example above).

2.2.8.1 CUE Print-driven Locking

Once the CUE Print package that inherits a print storyline is released, its content is locked and no
changes can be made to it. This change of status is made visible by locking the print storyline in CUE as
well. It is no longer possible to edit the storyline, and it is stamped with a message indicating its locked
status:

Should the package be "unreleased" in CUE Print, then it is also unlocked in CUE, and its stamp is
removed.

Copyright © 2015-2023 Stibo DX A/S Page 19

CUE Tech Guide

In addition, the story elements that make up a print storyline can be individually locked and stamped if
the elements they are mapped to are branched in CUE Print:

Should the changes made to an element in CUE Print be reverted, then the related story element is
unlocked in CUE and its stamp is removed.

Note that story elements can only be locked in this way if they have been correctly configured with a
cue:cue-print element.

2.2.8.2 Displaying CUE Print Measurement Data

You can configure the story elements in a CUE Print-integrated storyline to display "as you type"
measurement data consisting of character, word and "write to fit" line counts:

The line count changes color according to its write-to-fit status:

• Black if the current line count is less than the requested line count

• Green if the current line count matches the requested line count

• Red if the current line count exceeds the requested line count

Copyright © 2015-2023 Stibo DX A/S Page 20

CUE Tech Guide

To enable this functionality for a story element, you must add a ui:count element story element's
type definition (in addition to the cue:cueprint element that specifies its target CUE Print element
tag:

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type
 xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 xmlns:cue="http://xmlns.cuepublishing.com/configuration"
 name="headline">
 <ui:label>Headline</ui:label>
 <ui:icon>headline</ui:icon>
 <ui:priority>900</ui:priority>
 <ui:count show="true"/>
 <cue:cue-print elementTag="Headline">
 <field name="headline" type="basic" mime-type="text/plain">
 <ui:title-field/>
 </field>
 <ui:style>
 .story-element-headline [contenteditable='true'] {
 font-size: 2.5em;
 }
 </ui:style>
</story-element-type>

Note that:

• The ui:count element's for attribute (used when enabling word/character counts for online
storylines, see section 2.2.29.1) is not used in this context.

• The ui:count element can only be used in this way with story elements. Although the ui:count
element can added to individual fields of a story element when enabling word/character counts
for online storylines (see section 2.2.29.1), this is not the case when enabling CUE Print-based
measurements.

2.2.9 Smart Quotes

CUE has a "smart quotes" function that can automatically convert default "straight" single or double
quotes to "curly" quotes of various kinds. Different languages (and different publishers) have different
quotation mark conventions, so this function is configurable, allowing you to set up CUE to use the
quotation marks you require.

Smart quoting is disabled by default. To enable it:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example:

nano /etc/escenic/cue-web/config.yml

3. Add a useSmartQuotes property, and set it to true:

useSmartQuotes: true

This enables the smart quotes function.

4. Add a smartQuotes property with four child properties called openDoubleCurly,
closeDoubleCurly, openSingleCurly and closeSingleCurly. Use these properties to

Copyright © 2015-2023 Stibo DX A/S Page 21

CUE Tech Guide

specify the quotation marks you want to use. Straight double quotation marks are replaced by
the characters you specify with openDoubleCurly and closeDoubleCurly, and straight
single quotation marks are replaced by the characters you specify with openSingleCurly and
closeSingleCurly. The following settings, for example:

useSmartQuotes: true
smartQuotes:
 openDoubleCurly: "„"
 closeDoubleCurly: "”"
 openSingleCurly: "‘"
 closeSingleCurly: "’"

will replace "quotation" with „quotation” and 'quotation' with ‘quotation’.

5. If you want to limit the smart quotes functionality to rich text fields only, add the following:

disableSmartQuotesInNonRichTextFields: true

The smart quotes functionality will then not work in plain text fields.

6. Save the file.

7. Enter:

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the changes you have made.

2.2.9.1 Publication-specific Smart Quotes

If required, you can override your global smart quotes settings with different settings in specific
publications. This can be necessary for organizations operating in multilingual markets, where
different quotation marks are used in different languages. You can also disable smart quotes for
specific publications.

In general, you can specify any number of named smart quote sets called mappings, and apply any
mapping to any publication. There are however, two limitations to be aware of:

• A storyline variant will always inherit the smart quotes of the base storyline's publication, even if
the variant's publication has a different smart quote mapping. This is not likely to be a problem in
most cases since an inherited story has the same language as its base. Should you need to change
a variant's quotation marks, it will be necessary to do this in some other way (in CUE Front, for
example, or for a print storyline, in CUE Zipline).

• Classic print stories are not supported. Classic print stories only exist in CUE Print, and the
selection of which smart quote mapping to use is made in Content Store.

The smart quote mappings are defined in a mappings property as follows:

useSmartQuotes: true
disableSmartQuotesInNonRichTextFields: true
smartQuotes:
 openDoubleCurly: "„"
 closeDoubleCurly: "”"
 openSingleCurly: "‘"
 closeSingleCurly: "’"
 - name: 'tomorrow-online-mapping'
 disableSmartQuotesInNonRichTextFields: false
 - name: 'tomorrow-germany'
 disableSmartQuotesInNonRichTextFields: false

Copyright © 2015-2023 Stibo DX A/S Page 22

CUE Tech Guide

 openDoubleCurly: '„'
 closeDoubleCurly: '“'
 openSingleCurly: '‚'
 closeSingleCurly: '‘'
 - name: 'tomorrow-denmark'
 disableSmartQuotesInNonRichTextFields: false
 openDoubleCurly: '#'
 closeDoubleCurly: '#'
 openSingleCurly: '#'
 closeSingleCurly: '#'

Mappings are assigned to publications by adding publication.smartQuotesMapping entries to
your publications' feature resources (see feature). To make a publication use the mapping called
tomorrow-online-mapping, you would need to add the following line to its feature resource:

publication.smartQuotesMapping=tomorrow-online-mapping

and upload the resource to the Content Store as described here.

2.2.10 Spelling Checker

CUE can be configured to provide spelling and grammar checking in a number of different ways:

Use the cue-spellcheck service
cue-spellcheck is a microservice for CUE, that provides an interface to external spelling/
grammar checking services. You are recommended to use this spelling checker if possible.

Use the CUE Print spelling checker
If your installation includes CUE Print, then you can configure CUE to use the CUE Print
spelling checker. The CUE Print spelling checker only works with classic CUE content (not with
storylines).

Depend on the browser
Chrome includes a built-in spelling checker, and there are also spelling checker plug-ins for
Chrome. If you do not add any explicit spelling checker configuration, then whatever spelling/
grammar checker is configured in the browser will be used.

If you are going to use the cue-spellcheck service, then before you configure CUE, you will need
to install and configure cue-spellcheck, as described in section 3.2.

To enable the cue-spellcheck service or the CUE Print spelling checker:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example:

nano /etc/escenic/cue-web/config.yml

3. For the CUE Print spelling checker, just add the following settings:

cueSpellCheck:
 enabled: true
 defaultState: on

For cue-spellcheck, you need to include one additional setting:

cueSpellCheck:
 enabled: true

Copyright © 2015-2023 Stibo DX A/S Page 23

http://docs.escenic.com/ece-resource-ref/7.18/feature.html
http://docs.escenic.com/ece-server-admin-guide/7.18/upload_resources1.html

CUE Tech Guide

 defaultState: on
 serviceURL: 'https://cue-spellcheck-url/spellcheck'

where cue-spellcheck-url is the URL of the cue-spellcheck micro-service.

If your installation includes CUE Print and you have enabled cue-spellcheck, then by
default the CUE Print spelling checker will be used for classic CUE stories. If you want cue-
spellcheck to be used instead, then you can enforce this by adding:

cueSpellCheck:
 enabled: true
 defaultState: on
 serviceURL: 'https://cue-spellcheck-url/spellcheck'
 prefer: cue

This setting has no effect on storylines, since the CUE Print spelling checker only works with
classic stories.

The above settings both enable the selected spelling checker and switch it on by default for
all users. If you don't want it to be on by default for all users, then set defaultState to off
instead.

4. Save the file.

5. Enter:

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the changes you have made.

Whether you set the spelling checker on or off by default, CUE users can subsequently switch it on
or off for themselves. The option can be found under Personal preferences on the Settings page.
Their selected setting is saved on the device, so users who use multiple devices will need to make the
setting separately on each device.

If you do not add a spelling checker configuration as described above, then whatever spelling/grammar
checker is configured in the browser will be used.

2.2.10.1 Disabling the Spelling Checker

You can disable spelling checks (whichever spelling checker you use) at two different levels:

Publication
You can disable spelling checks in a publication by not specifying a language
for the publication. A publication's language is specified by including a
com.escenic.cue.spellcheck.language entry in the publication's feature resource (see
com.escenic.cue.spellcheck.language). For a German publication, for example, you could enter

com.escenic.cue.spellcheck.language=de-DE

in the feature resource. Omitting such an entry will disable spelling checks in the publication.

Field
You can disable spelling in specific storyline/content item fields by including a
ui:spellcheck element containing the value false in the field's definition in the content
type resource (see spellcheck). For example:

<field name="headline" type="basic" mime-type="text/plain">
 ...
 <ui:spellcheck>false</ui:spellcheck>

Copyright © 2015-2023 Stibo DX A/S Page 24

http://docs.escenic.com/ece-resource-ref/7.18/com_escenic_cue_spellcheck_language.html
http://docs.escenic.com/ece-resource-ref/7.18/ih_spellcheck.html

CUE Tech Guide

</field>

Specifying <ui:spellcheck>true</ui:spellcheck> cannot be used to locally enable
the spelling checker if it is disabled at publication level. Specifying a value of true with this
element has no meaning.

2.2.11 Semantic Shortcut Key Combination

CUE has a semantic shortcut feature that provides keyboard-only access to CUE features. By
default, a semantic shortcut is introduced by pressing the Shift key twice in quick succession: this
displays a small dialog listing additional keys the user can press to complete a shortcut and execute
an action. You can, however, replace the Shift Shift introductory key sequence with some other
key sequence or key combination if required. You can also change the maximum interval between the
keypresses in an introductory key sequence.

To change the default semantic shortcut settings:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example:

nano /etc/escenic/cue-web/config.yml

3. To replace the default Shift Shift sequence add the following setting:

keyboardShortcuts:
 semanticToggle: "new-sequence"

where new-sequence is a key sequence specification such as mod mod (which specifies a key
sequence) or mod+alt+a (which specifies a key combination).

4. If you are using a key sequence (either the default shift shift or a sequence you have defined
yourself), you can also control how quickly the user has to type the sequence in order for it
to be recognized. By default, the interval between the two keypresses must not exceed 500
milliseconds. To increase the interval to 600 milliseconds, for example, you would need to enter a
resetSequenceTimeout property as a child of the same keyboardShortcuts property:

keyboardShortcuts:
 resetSequenceTimeout: 600

5. Save the file.

6. Enter:

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the change you made.

Note that:

• The key identifier mod represents the ctrl key on Windows or the command key on Mac. You
should always use mod rather than ctrl or command to ensure that semantic shortcuts will
work on both platforms.

• You can in theory use any sequence or combination of keys to introduce semantic shortcuts, but
in order to avoid problems you are recommended to stick to either a modifier sequence such as
shift shift or a combination of modifiers and characters such as mod+alt+a. You should also
take care to avoid combinations that are already in use either by CUE itself or by the browser.

Copyright © 2015-2023 Stibo DX A/S Page 25

CUE Tech Guide

For more detailed information about supported key combinations and how to specify them, see the
documentation of the Javascript library used to provide this functionality: Mousetrap.

2.2.12 Content Creation Shortcuts

You can make custom shortcuts for creating new content items of specific types by adding a
quickCreateShortcuts entry to one of the configuration files in /etc/escenic/cue-web/. The
quickCreateShortcuts must contain an array of definitions, each one defining the shortcut(s) for
creating a different type of content item. For example:

quickCreateShortcuts:
 - name: "Regular Story"
 keystroke: "r"
 quickCombo: ["ctrl+alt+r"]
 contentType: "regular-news-story"

 - name: "Developing Story"
 keystroke: "d"
 quickCombo: ['ctrl+alt+d']
 contentType: "developing-story"

 - name: "Classic Story"
 keystroke: "c"
 quickCombo: ['ctrl+alt+c']
 contentType: "story"

 - name: "Picture"
 keystroke: "p"
 quickCombo: ['ctrl+alt+p']
 contentType: "picture"

The primary purpose of this configuration is to create custom semantic shortcuts for content
creation. Once you have created at least one such shortcut, then the existing Shift Shift C
(Create) semantic shortcut will, instead of immediately displaying the Create new dialog, display
the semantic shortcuts you have created, plus an N ...other content types option that displays the
Create new dialog:

Selecting any of the custom shortcuts creates the new content item immediately.

You can, however, (as in the example shown above) create additional key combination shortcuts.

Each shortcut definition consists of the following properties:

name (required)
The label to use in the semantic shortcut dialog.

Copyright © 2015-2023 Stibo DX A/S Page 26

https://craig.is/killing/mice

CUE Tech Guide

keystroke (required)
The semantic shortcut keystroke to follow Shift Shift C. You can use any key except N. Omit
this property if you only want to create a standard key combination shortcut.

quickCombo (optional)
An alternative key combination shortcut. Make sure you avoid the combinations already used by
CUE and the browser. Omit this property if you only want to create a semantic shortcut.

contentType (required)
The name of the content type to create.

2.2.13 The Publish Shortcut

By default, the Publish buttons in CUE are assigned the shortcut ctrl+shift+s / command+shift
+s. You can, however, replace this default with another shortcut or remove it entirely by adding a
publishButtonShortcut entry to one of the configuration files in /etc/escenic/cue-web/.
Removing the shortcut from these buttons reduces the risk of users unintentionally publishing content
while editing.

To remove the default shortcut from the Publish buttons, set the value of
publishButtonShortcut to an empty array:

publishButtonShortcut: []

To replace the default shortcut with your own shortcut, fill the array with the key combinations you
want to use:

publishButtonShortcut: ['mod+alt+p']

mod is shorthand for both the ctrl key on Windows and the command key on Macs, so the above is
equivalent to:

publishButtonShortcut: ['ctrl+alt+p','command+alt+p']

Be careful not to choose a key combination that is already in use – either by CUE, the browser or the
operating system.

2.2.14 Content Card Date Type

The content cards displayed in lists such as search results lists include a date field that can be used as
a sorting key. By default, the date shown in this field is the content item's creation date (or in fact its
creation time). You can optionally replace the creation date/time with the last-modified date/time if
you consider this to be a more useful sort key.

To replace creation date/time with last-modified date/time:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example:

nano /etc/escenic/cue-web/config.yml

3. Add the following setting:

useModificationTimeOnContentCard = true

4. Save the file.

Copyright © 2015-2023 Stibo DX A/S Page 27

CUE Tech Guide

5. Enter:

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the change you made.

2.2.15 Storyline Symbol Insertion

CUE's storyline editor includes a tool for easily inserting symbols and special characters in the
storyline text: non-Latin characters, mathematical symbols, currency symbols, emojis and invisible
characters such as soft hyphens and non-breaking spaces. The purpose of the symbol insertion tool
is not to enable the insertion of any character (computer operating systems in any case provides
methods for doing that) but to make the insertion of commonly-used special characters easy. Before
you can used the symbol insertion tool, therefore, you need to configure it with a selection of the
characters and symbols likely to be actually required at your installation.

Once it is configured, the symbol insertion tool provides the following capabilities:

• Keyboard shortcuts for inserting characters and symbols

• A Symbols dialog from which characters and symbols can be selected

• A function for revealing the location of invisible characters such as soft hyphens

The symbol insertion functionality is only available in text-only story elements such as headline,
lead-text, paragraph, pull-quote and so on. It will not work in story elements that contain
non-text fields: none of the symbol insertion features will work in in the caption field of an image
story element, for example.

The Symbols dialog is displayed by means of a semantic shortcut (Shift Shift Y) and looks like
this:

All the special characters configured for use at your site are displayed at the bottom of the dialog under
All. In addition, each user's 5 most frequently used characters are displayed at the top of the dialog
under Favorites. Any displayed character can be inserted by clicking on it, and hovering the mouse
over a character will display its name (useful for invisible characters such as soft hyphens). There is
also a Search field at the top of the dialog that you can use to search for symbols by name.

Copyright © 2015-2023 Stibo DX A/S Page 28

CUE Tech Guide

Checking the Show invisible symbols in text option highlights any invisible characters in the
storyline in blue, rendering them visible. If you check or uncheck this option, then an Apply button
is displayed in the dialog so that you can close the dialog and apply the change. In this way you can
switch highlighting of invisible characters on and off.

Depending on how the symbol insertion tool is configured, it may also be possible to enter some
characters just by pressing a keyboard shortcut, without displaying the Symbols dialog (see the
description of the shortcut property below).

To enable the symbol insertion functionality, you need to add a specialChars property like this to
one of your CUE configuration files:

specialChars:
- name: 'Soft Hyphen'
 icon: '-'
 invisible: true
- name: 'Left double-angle quote'
 icon: '«'
 shortcut: ["ctrl+alt+,", "command+alt+,"]
- name: 'Right double-angle quote'
 icon: '»'
 shortcut: ["ctrl+alt+.", "command+alt+."]
- name: 'Copyright'
 icon: '©'

The specialChars property must contain an array of entries defining the characters you want users
to be able to insert. Each entry consists of the following properties:

name
The character/symbol name as you want it to appear in the Symbols dialog. (Required)

icon
The actual character or symbol to be inserted. (Required)

Note that in the example shown above, the icon appears to be an empty string, but is in fact
a soft hyphen character (U+00AD).

shortcut
An array of one or more shortcut definitions that can be used to insert the character. Make sure
to avoid shortcuts that are already used by the operating system or the browser. (Optional)

invisible
Set this to true for invisible characters that you want to be able to highlight using the Show
invisible symbols in text function. (Optional)

2.2.16 Section Page Metadata Panel Width

You can increase the width of the metadata panel in the section editor has been increased. Some users
may prefer this layout, since much of the section page editor's functionality is located in the metadata
panel.

To enable an extra-wide section page metadata panel:

1. If necessary, switch user to root.

$ sudo su

Copyright © 2015-2023 Stibo DX A/S Page 29

CUE Tech Guide

2. Open /etc/escenic/cue-web/config.yml for editing. For example:

nano /etc/escenic/cue-web/config.yml

3. Add the following setting:

wideSectionMetadataPanel = true

4. Save the file.

5. Enter:

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the change you made.

2.2.17 Search Filters

The CUE search panel offers a set of search filters that allow users to narrow down the results of a
search by limiting the results to all documents of a specified type or all documents created after a
certain date, and so on. It is difficult to design a set of filters that meets all customers' requirements, so
the CUE search filters are configurable. By editing a Content Store configuration file, you can:

• Determine which filters appear in the search panel's filters list

• Determine the order in which the filters appear

• Add your own custom filters

Exactly how you modify the search filters offered in the CUE search panel depends on whether your
CUE installation has a CUE Content Store back end, or an Escenic Content Engine back end:

• If you have a CUE Content Store back end, then it is a Content Store configuration task. No
configuration work is required in CUE itself. For instructions on how to modify CUE's search filters,
see Custom Search Filter Definitions.

• If you have an Escenic Content Engine back end, then see section 2.2.17.1 below.

2.2.17.1 Modifying the Search Filter Panel (Escenic Back End)

Custom filters are simpler than the predefined filters: they are simple tests that the CUE user can only
turn on or off. You could, for example, create a "Premium content" filter that selects only content items
with a Boolean premium field that is set to true.

To modify the search filter panel:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/40-search-filter.yml for editing. For example:

nano /etc/escenic/cue-web/40-search-filter.yml

3. Modify the default search filter layout to meet your requirements:

searchFilter:
 - id: "document-types"
 name: "Document Types" #translate
 - id: "document-states"
 name: "Document States" #translate
 - id: "creation-date"
 name: "Creation date" #translate

Copyright © 2015-2023 Stibo DX A/S Page 30

http://docs.escenic.com/ece-pub-design-guide/7.18/custom_search_filter_definitions.html

CUE Tech Guide

 - id: "authors"
 name: "Authors" #translate
 - id: "sections"
 name: "Sections" #translate
 - id: "tags"
 name: "Tags" #translate

You can, for example, change the order of the predefined filters and remove any you don't need by
commenting them out:

searchFilter:
 - id: "document-types"
 name: "Document Types" #translate
 - id: "document-states"
 name: "Document States" #translate
 - id: "creation-date"
 name: "Creation date" #translate
 - id: "sections"
 name: "Sections" #translate
 - id: "authors"
 name: "Authors" #translate
- id: "tags"
name: "Tags" #translate

You can also add custom filters of your own. You can insert a custom filter anywhere you like, for
example:

searchFilter:
 - id: "document-types"
 name: "Document Types" #translate
 - id: "document-states"
 name: "Document States" #translate
 - id: "creation-date"
 name: "Creation date" #translate
 - id: "premium-content"
 name: "Premium Content" #translate
 query: "premium_b:true"
 - id: "sections"
 name: "Sections" #translate
 - id: "authors"
 name: "Authors" #translate
- id: "tags"
name: "Tags" #translate

4. Save the file.

5. Enter:

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the changes you have made.

Note the following:

• A custom filter's query property of must contain a valid Solr query clause. This means that in order
to write such a clause you need to know both Solr query syntax and your Solr schema (in order to
know what fields are indexed and how to identify the fields correctly).

• The predefined search filters have fixed IDs. Make sure that your custom filter IDs do not clash
with them.

Copyright © 2015-2023 Stibo DX A/S Page 31

http://www.solrtutorial.com/solr-query-syntax.html

CUE Tech Guide

2.2.18 Dashboards (Content Store only)

The functionality described in this topic depends on use of the CUE Content Store. If you are using
CUE with an Escenic Content Engine back end, then it is not available.

A dashboard is a panel that contains one or more constantly updated lists of content items
maintained by CUE. Dashboards provide an easy way for editors and others to maintain control
over the editorial workflow. A dashboard might, for example, contain two lists: one showing all draft
content items in the Sports section and the other showing all approved content items in the same
section. Another dashboard might contain a single list showing all image content items that are in the
approved state. You can define any number of dashboards.

The content of a dashboard is updated every 30 seconds by default.

All the dashboards available to you can be displayed by selecting from the left hand navigation
menu:

Double-click on one of the listed dashboards to display it in a new tab.

The content item lists displayed in a dashboard are the results of predefined searches. The appearance
and functionality of a dashboard depends upon whether it contains just one search result list, or
several.

A single-search dashboard looks more or less identical to the CUE search panel:

Like an ordinary search panel it has a search field at the top and a filter drop-down on the right that
you can use to narrow down the contents of the list. And as with the standard search panel, you can
also save searches. A saved search created in a dashboard belongs to the dashboard: you will not find it
in the standard search panel or in any other dashboard.

Copyright © 2015-2023 Stibo DX A/S Page 32

CUE Tech Guide

A multiple search dashboard has a simpler layout, and the searches it provides cannot be modified:

There is no search field or filter panel: just lists of search results.

Creating dashboards is a Content Store configuration task. No configuration work is required in CUE
itself. For instructions on how to create dashboards, see Dashboard Definitions.

2.2.19 Asset Picker Custom Search Filters (Content Store only)

The asset picker dialogs displayed by CUE for selecting content items in various contexts (for example
selecting an image, video or relation to include in a story) have a search filter button. Clicking this
button displays a search filter form that lets the user narrow down the list of selectable content items
in various ways.

CUE is delivered with a standard search filter that is used in all search panels, dashboards and asset
pickers by default. It is, however, possible to modify this standard search filter and to define your own
search filters. If CUE has a Content Store back end then you can replace asset picker search filters with
these custom search filters. This feature is not, however, available with Escenic Content Engine back
ends.

You can configure an asset picker to use a custom search filter in two different ways:

• For a standard content item relation, you do it by inserting a ui:search-filter-name
element as a child of the appropriate relation-type element in a content type definition (see
Customizing Relation Asset Picker Filters).

• For story elements that represent relations such as "image", "video", "gallery" and "relation" story
elements, you do it by inserting a ui:search-filter-name element as a child of the link
type field element in the relevant story-element-type definition (see Image Element Type
Filters).

In both cases the ui:search-filter-name element must contain the name of the search filter that
you want to use:

<ui:search-filter-name>my-custom-search-filter</ui:search-filter-name>

Copyright © 2015-2023 Stibo DX A/S Page 33

http://docs.escenic.com/ece-pub-design-guide/7.18/dashboard_definitions.html
http://docs.cuepublishing.com/ece-pub-design-guide/7.18/customizing_relation_asset_picker_filters.html
http://docs.cuepublishing.com/ece-pub-design-guide/7.18/image_element_type.html
http://docs.cuepublishing.com/ece-pub-design-guide/7.18/image_element_type.html

CUE Tech Guide

2.2.20 Autosave Interval

By default, changes made in a content editor are autosaved every three seconds. If you wish to change
the autosave interval, you can do so by adding a configuration setting as follows:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example

nano /etc/escenic/cue-web/config.yml

3. Add the following setting:

autoSaveInterval: interval

where interval is the required update interval in milliseconds (the default setting is 3000).

4. Save the file.

5. Enter:

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the changes you have made.

2.2.21 Quick View

CUE has a quick view feature that lets you quickly display a content item without having to actually
open it in an editor. To display a quick view you select the content item you are interested in (for
example, in a search results list) and press the space bar. This displays a pop-up window containing
a simplified view of the content item. The quick view is superficially similar to a content editor but
usually contains only a subset of the content item's fields, and it is not editable. You can navigate up
and down in the content item list with the quick view open, and the contents of the view will change to
show the currently selected item. To close the quick view, press the space bar a second time.

The quick view feature is available in:

• Search results lists

• Dashboard lists

• The Recent list

• The metadata panel Related and Usage sections

• The section page editor

• Inbox and list editors

In order to be useful, the quick view function must be configured by adding ui:preview elements to
the fields in your content type and story element type definitions. Unless you do this, the main part of
the quick view window will always be empty (although the metadata panel on the right of the window
will contain some basic metadata).

To make a field show up in quick views, you need to add a ui:preview element as a child of it's
field type definition. For a storyline-based content item, this will be a field element in a story
element type definition (see Story Element Types). For a rich text-based content item, it will be a field
element in a content type definition (see The content-type Resource).

The following example shows a field definition containing a ui:preview element:

Copyright © 2015-2023 Stibo DX A/S Page 34

http://docs.cuepublishing.com/ece-pub-design-guide/7.18/story_element_types.html
http://docs.cuepublishing.com/ece-pub-design-guide/7.18/the_content_type_resource.html

CUE Tech Guide

<field name="caption" type="basic" mime-type="text/plain">
 <ui:label>Caption</ui:label>
 <ui:preview/>
</field>

The ui:preview element currently only works for plain text, rich text and image binary fields. If you
add it to other kinds of fields, it will be ignored.

2.2.21.1 Quick View "Thumbnail" Threshold

In order to ensure that the quick view feature is actually quick, large images are not displayed at full
resolution. Any image above a specified size is replaced by a lower resolution copy. These quick view
copies are referred to as "thumbnails", although they are considerably larger than normal thumbnail
images.

By default, an image is replaced by a thumbnail version if it is larger than 1 megabyte. You can,
however change this default by adding a quickViewThumbnailThreshold property setting to one
of your CUE configuration files:

quickViewThumbnailThreshold: 1500000

The threshold must be specified in bytes.

The quick view thumbnail feature depends on the Content Store metadata extraction feature (see
Metadata Extraction) in order to be able to determine the size of the original image. If this Content
Store feature is not enabled then the original image will always be used, irrespective of the value set
with quickViewThumbnailThreshold.

2.2.22 HTML Source Editing

By default, CUE's rich text editor (used for editing XHTML-based rich text fields, not storyline
content) does not include a source editing feature as in most cases it is not required. In some cases,
however, rich text fields may end up containing unwanted or incorrect HTML markup. In such cases,
access to a source editor may be needed to correct the problem.

You can therefore optionally enable a source editing option in the rich text editor. The editor cannot
be globally enabled, but you can enable it for specific content types and / or specific rich text fields by
adding ui:allow-source-editor elements to a publication's content-type resource. For detailed
instructions on how to do use this element, see allow-source-editor.

For any rich text field where HTML source editing is enabled, the following button is added to the
editor toolbar:

The HTML source editing option is intended to be used for the correction/removal of invalid or
unwanted HTML, not for the insertion of custom HTML content.

2.2.23 Cleaning up Pasted Content

Content copied from external sources such as web pages can contain a lot of unwanted and potentially
dangerous markup. CUE therefore filters all content pasted into the rich text editor, removing

Copyright © 2015-2023 Stibo DX A/S Page 35

http://docs.escenic.com/ece-advanced-temp-dev-guide/7.18/metadata_extraction.html
http://docs.escenic.com/ece-resource-ref/7.18/ih_allow_source_editor.html

CUE Tech Guide

everything except a small subset of HTML formats that are considered to be both useful and harmless.
CUE's has two whitelists of allowed formats: a very restrictive one for print stories:

b i u sub sup p br ul ol li table thead tbody tfoot tr th td

and a slightly less restrictive one for online stories that includes headings, images and links:

h1 h2 h3 h4 h5 h6 b i u sub sup p br a[href] a[target] a[rel] ul ol li img[src]
 img[alt] img[width] img[height] table thead tbody tfoot tr th td

The print whitelist is fixed, but you can override the online whitelist for a rich text fields by adding
a ui:whitelisted-elements-onpaste element to the field definition in your publication's
content-type resource. The ui:whitelisted-elements-onpaste element must be added
as a child of the field element. If you want to change the whitelist of all the rich text fields in your
publication then you must add a ui:whitelisted-elements-onpaste element to all the rich text
field elements in your content-type resource.

Here is an example whitelist definition that is more restrictive than the default online whitelist:

<ui:whitelisted-elements-onpaste>
 h1 h2 h3 b i p br a[href] a[target] a[rel] a[class=myclass]
</ui:whitelisted-elements-onpaste>

For further information about the ui:whitelisted-elements-onpaste element, see here.

2.2.24 CUE Print Access for Freelancers

To give freelancers full access to CUE print, including content creation rights:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example:

nano /etc/escenic/cue-web/config.yml

3. Add the following setting:

contractorExtendedAccess = true

4. Save the file.

5. Enter:

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the change you made.

Note that this freelancer access is limited to CUE print, it does not include online access.

2.2.25 Teaser Anchors in Section Page Previews

CUE can generate teaser-specific section page previews – previews that automatically scroll to a
selected teaser. This can be very useful when working on publications with very long section pages.
Instead of having to search for the teaser you are interested in after displaying the preview, you just
select the teaser in CUE before you generate the preview: the preview then automatically scrolls to the
correct location in the preview.

Copyright © 2015-2023 Stibo DX A/S Page 36

http://docs.escenic.com/ece-resource-ref/7.18/whitelisted_elements_onpaste.html

CUE Tech Guide

CUE generates a teaser-specific preview by including a fragment identifier in the URL passed to the
preview tab:

http://mywebsite.com/#ece-12345?poolId=104&token=-1361898978

This URL will cause the displayed preview to scroll down to the teaser marked with the anchor . CUE only includes a fragment ID in the preview URL if a teaser is selected
in the section page editor when the preview button is pressed. The fragment ID has the form:

prefix content-item-id

where prefix is by default ece- and content-item-id is the internal ID of the selected teaser.

You can change the prefix that is used as follows:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example:

nano /etc/escenic/cue-web/config.yml

3. Add the following setting:

previewAnchorPrefix = "your-preferred-prefix"

4. Save the file.

5. Enter:

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the change you made.

Required front-end configuration

In order for this feature to work, you must configure your front end application (i.e the CUE Front
Waiter) to add matching HTML anchors to section page teasers. The Waiter application in the
Tomorrow Online demo supplied with CUE Front 1.9 or higher includes a Twig template for this
purpose called anchor.twig:

If you want to know more, download the Tomorrow Online demo and look in the Twig templates to see
how it is used.

2.2.26 Metadata Panel Section List Length

At installations where content items may appear in very many sections, displaying the complete list
of sections in the metadata panel can become a performance problem. You can, however, reduce the
impact of this problem by limiting the length of the metadata panel section list.

This option is disabled by default. To enable it, add the following setting to one of your CUE
configuration files:

filteredSectionPanel: true

Copyright © 2015-2023 Stibo DX A/S Page 37

CUE Tech Guide

When this option is enabled, a content item's section list will only contain the section in which the
content item was created and the publication home section. You can expand the list to show all
sections by selecting the ADVANCED link at the top of the metadata panel.

2.2.27 Default Tag Relevance

You can define the default relevance assigned to newly-created tags by adding the following setting to
one of your CUE configuration files:

defaultTagRelevance: relevance

where relevance is one of the following values:

0.2
Corresponds to one bar in the UI.

0.4
Corresponds to two bars in the UI.

0.6
Corresponds to three bars in the UI.

0.8
Corresponds to four bars in the UI.

1.0
Corresponds to five bars in the UI.

If the defaultTagRelevance property is not present or is set to any other value, then tags are
assigned a default relevance of 1.0 (five bars).

Tags added by CUE Semantic are assigned a relevance by the back end tagging service, and are
therefore not affected by the defaultTagRelevance setting.

2.2.28 Sections Side Panel Preview

By default, the Sections side panel used to display the section tree also displays a preview of
the currently selected section in CUE's main panel. Generating this preview can negatively affect
performance in some cases, and it is therefore possible to disable it. To do so, add the following setting
to one of your CUE configuration files:

hideSectionPreview: true

2.2.29 Storyline Metrics (Content Store only)

CUE can display character and word counts for the story elements in a storyline and for individual
fields within story elements. If the CUE installation includes a CUE Print back end, then it is also
possible to display "write to fit" line counts. In addition to the counts displayed at the bottom of each
field or story element, a Metrics metadata panel can also be used to display summary counts for the
whole storyline.

It is possible to set length constraints for storylines and story element fields, specified as maximum
and/or minimum word and/or character counts. If constraints are specified, then they are reflected in
the metrics displayed for a story. The specified limits are displayed together with the current word /
character counts, and in addition the word / character counts change color to highlight content that is

Copyright © 2015-2023 Stibo DX A/S Page 38

CUE Tech Guide

breaking constraints (yellow if the current count is below the specified minimum and red if it is above
the specified maximum). These constraints are purely advisory. CUE will not prevent the user from
saving or publishing a story that is breaking a length constraint.

The storyline metrics functionality is extremely flexible, and can be configured to display exactly the
figures you need.

The storyline metrics described in this section is primarily aimed at online content. At installations
with a CUE Print back-end, storylines can alternatively be configured to display measurements
supplied by the CUE Print back end. These measurements include print-specific "write-to-fit" line
counts. For further information about this, see section 2.2.8.2.

2.2.29.1 Configuring Character and Word Counts

CUE can display a character / word count below story elements or fields in story elements:

The counts are constantly updated as the user types, so they are always correct. The counts are only
displayed where they are configured to appear.

To add a count to a story element you need to add a ui:count element to the story element's type
definition. The ui:count element must be inserted as the child of the story-element-type
element:

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type
 xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints" name="headline">
 <ui:label>Headline</ui:label>
 <ui:icon>headline</ui:icon>
 <ui:priority>900</ui:priority>
 <ui:count show="true" for="total headlines"/>
 <field name="headline" type="basic" mime-type="text/plain">
 <ui:title-field/>
 </field>
 <ui:style>
 .story-element-headline [contenteditable='true'] {
 font-size: 2.5em;
 }
 </ui:style>
</story-element-type>

The show="true" attribute causes counts to be displayed below story elements of this type. If you set
show=false, then the characters and words are counted, but not displayed below the story elements.
The for="total headlines" attribute causes the counts to be added to storyline summaries that
can be displayed on a Metrics metadata panel:

Copyright © 2015-2023 Stibo DX A/S Page 39

CUE Tech Guide

Specifically, for="total headlines" says that the counts are to be added to summaries called
total and headlines. For information about how storyline count summaries are defined, see
section 2.2.29.2.

When you add a count to a story element type in this way, all of the text in the story element is
counted: all of its text fields, and any child story elements it contains. For some story element types,
you may not want to do this. For an image story element type, for example, you might want to count
the content of the caption field, but not the content of the copyright field. In this case, instead of
adding a ui:count element to the whole story-element-type definition, you can just insert it to
the field definitions you are interested in:

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 name="image">
 ...
 <field name="caption" type="basic" mime-type="text/plain">
 <ui:label>Caption</ui:label>
 <ui:count show="true" for="total body"/>
 </field>
 ...
</story-element-type>

2.2.29.2 Configuring a Metrics Panel

A metrics section is only included in a content item's metadata panel if it is configured to do so in the
content item's type definition:

<?xml version="1.0" encoding="UTF-8"?>
<content-type name="story">
 ...
 <cue:metadata-panel>
 cue.general-info
 cue.section
 cue.metrics
 ...
 </cue:metadata-panel>
 ...
</content-type>

For general information about defining metadata panel sections, see section 2.2.7.

To define the summary counts displayed in the Metrics panel, you need to add a
storylineMetrics entry like this to one of your CUE configuration files:

storylineMetrics:
 metricPanel:
 - identifier: "headlines"
 label: "Headline"
 - identifier: "body"
 label: "Body"
 - identifier: "total"
 label: "Total"

You can define as many summary counts as you like in this way, and they will all be displayed in the
Metrics panel using the specified labels. The identifiers are the summary names that must be
referenced in the ui:count element's for attribute. In general, the order of the summary counts

Copyright © 2015-2023 Stibo DX A/S Page 40

CUE Tech Guide

on the Metrics panel is determined by the order in which story elements appear in the storyline. A
summary count with the identifier total, however, is always displayed last.

2.2.29.3 Configuring Length Constraints

If you configure length constraints, then they are included in metrics counts as shown below:

The above examples include only character constraints, but word constraints are shown in exactly the
same way.

You can configure separate length constraints for storylines and story element fields. The way you
configure constraints for storylines is different to the way you do it for story element fields.

2.2.29.3.1 Story Element Field Length Constraints

To set length constraints for story elements or fields, all you need to do is add ui:minchars,
ui:maxchars, ui:minwords and ui:maxwords elements as children of the story-element-
type or field's ui:count element. For example:

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type
 xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints" name="headline">
 <ui:label>Headline</ui:label>
 <ui:icon>headline</ui:icon>
 <ui:priority>900</ui:priority>
 <field name="headline" type="basic" mime-type="text/plain">
 <ui:title-field/>
 <ui:count show="true" for="total headlines">
 <ui:minchars>5</ui:minchars>
 <ui:maxchars>50</ui:maxchars>
 <ui:maxwords>8</ui:maxwords>
 </ui:count>
 </field>
 <ui:style>
 .story-element-headline [contenteditable='true'] {
 font-size: 2.5em;
 }
 </ui:style>
</story-element-type>

You only need to add the constraints you are actually interested in – the ui:minwords constraint is
omitted from the above example.

2.2.29.3.2 Storyline Length Constraints

Storyline length constraints are defined in storyline templates. A storyline template can contain
several sets of constraints for different story sizes (short, medium and long, for example). The actual

Copyright © 2015-2023 Stibo DX A/S Page 41

CUE Tech Guide

constraints used can then be selected by the CUE user when a story based on the template is actually
created. The constraints are defined in a ui:content-length-restrictions element that must
be inserted in the storyline template as a child of the elements element. For example:

<elements>
 ...
 <ui:content-length-restrictions>
 <ui:content-length-constraint name="small">
 <ui:label>Small</ui:label>
 <ui:minchars>50</ui:minchars>
 <ui:maxchars>200</ui:maxchars>
 <ui:maxwords>40</ui:maxwords>
 </ui:content-length-constraint>
 <ui:content-length-constraint name="medium" default="yes">
 <ui:label>Medium</ui:label>
 <ui:minchars>150</ui:minchars>
 <ui:maxchars>800</ui:maxchars>
 </ui:content-length-constraint>
 <ui:content-length-constraint name="large">
 <ui:label>Large</ui:label>
 <ui:minchars>500</ui:minchars>
 <ui:maxchars>5000</ui:maxchars>
 <ui:minwords>250</ui:minwords>
 <ui:maxwords>1000</ui:maxwords>
 </ui:content-length-constraint>
 </ui:content-length-restrictions>
 ...
</elements>

The above example defines three different sets of constraints, small, medium and large, with
medium defined as the default. This means that when a content item is created based on this storyline
template, the medium constraints will be preselected. If none of the content-length-constraint
elements include a default="yes" attribute, then when a content item is created based on this
storyline template, no constraints will be set.

Content types that reference storyline templates containing length constraints will usually need to
include a story length field, so that CUE users are able to select the constraint set they want to use. A
story length field is a field element that contains a ui:story-size and a ui:hidden element. For
example:

<field name="story-size" type="basic" mime-type="text/plain">
 <ui:hidden />
 <ui:story-size />
</field>

The ui:story-size element identifies the field as a story size field, triggering CUE to display it as a
drop-down field at the bottom of the Metrics panel, where it can be used to select the required length
constraint set for the storyline. You must include a ui:hidden element to ensure that the field is not
displayed as an ordinary content item field. Note the following:

• It does not matter where you put the story size field definition in the content type definition, as long
as it is a valid location for a field element.

• The field's type and mime-type attributes are ignored: the field is always displayed as a drop-
down in CUE.

Copyright © 2015-2023 Stibo DX A/S Page 42

CUE Tech Guide

• The name of the field is not used by CUE, and nor is any ui:label element, should you include
one in the field definition.

The following screenshot shows a Metrics panel containing a story size field:

If a storyline template contains only one set of constraints and its default attribute is set to yes then
a story length field is not required.

For a full description of the ui:content-length-restrictions element and its children, see
here.

2.2.30 Preview

You can control the behavior of CUE's preview function by adding a previewControlSetting entry
to one of your CUE configuration files. previewControlSetting can hold a number of properties
that control various aspects of the preview function.

The default settings are:

previewControlSetting:
 visible: true
 previewAll: true
 devices:
 large:
 - name: 'Desktop'
 width: ''
 height: ''
 medium:
 - name: 'iPad Air'
 width: '1180'
 height: '820'
 - name: 'iPad Pro 12.9'
 width: '1366'
 height: '1024'
 small:
 - name: 'iPhone 14'
 width: '390'
 height: '844'

Copyright © 2015-2023 Stibo DX A/S Page 43

http://docs.escenic.com/ece-resource-ref/7.7/ih_content_length_restrictions.html

CUE Tech Guide

 - name: 'iPhone 14 Plus'
 width: '428'
 height: '926'
 - name: 'Samsung Galaxy S22'
 width: '360'
 height: '780'
 - name: 'Samsung Galaxy S22 Ultra'
 width: '360'
 height: '772'

The CUE preview function includes a slide-out dialog that users can use to modify the preview in
various ways. The previewControlSetting properties allow you modify the options displayed in
this dialog or alternatively to hide it, so that previews are fixed and cannot be modified by users. The
available settings are:

visible
Set this to false to hide the preview control dialog. End users will then not be able to control
what is shown in previews.

previewAll
By default the control dialog's Also preview unpublished content checkbox is checked,
which means that previews will include unpublished related content. If you set this property
to false, then the checkbox will be unchecked by default and previews will not include
unpublished related content.

devices
The control dialog contains options for showing what the preview will look like on different
devices with different size/shape screens. There are three fixed device groups: large (desktop/
laptop), medium (tablets) and small (mobile phones), and each group can contain as many
options as you wish to define. Each option must have a name (which appears in a selection
dropdown in the control dialog), and a width and height, used to determine the size and
shape of the displayed preview. The first entry in the large group is used as the default preview
layout. Each entry you create in the medium and small groups is used for both portrait and
landscape previews, with portrait being the default.

Please note that if the preview controller is enabled then the preview is shown in an iframe. This
may pose a problem for some websites due to how authorization is handled in iframes. If your
website cannot be displayed in an iframe then the preview controller should be disabled.

2.2.31 Inline Link Target Window Default

The Link target field in the rich text editor's Inline Link Properties dialog lets CUE users select
whether an inline link they insert should be opened in the current window or a new window. By
default, the default selection it offers to users is This window. You can, however, change the default
selection to New window by adding the following setting to one of your CUE configuration files:

xhtmlDefaultInlineLinkTarget: "_blank"

xhtmlDefaultInlineLinkTarget has two possible values:

_self (default)
The default selection offered by CUE is This window.

_blank
The default selection offered by CUE is New window.

Copyright © 2015-2023 Stibo DX A/S Page 44

CUE Tech Guide

2.2.32 Date Picker Default Time

By default, CUE date pickers show the current date and time when first opened. You can if you wish,
disable setting of the current time by adding the following settings to one of your CUE configuration
files:

currentTimeControlSetting:
 currentTimeInDatePicker: false

Date pickers will then still show the current date when first opened, but the time will always be set to
00:00 (12:00 AM).

2.2.33 CUE Print Handling in Create New Dialog

At installations with a CUE Print back end, CUE Print appears by default as an option in the Create
new dialog's Publication drop-down. Selecting CUE Print offers the user the option of creating
either a CUE Print text or a Story Folder:

You can if you wish modify this default behavior by adding a
disableCuePrintOptionsInNewContentDialog property to one of your configuration files and
setting it to true. The result of doing this is that no CUE Print option will appear in the Publication
drop-down. CUE Print text and Story Folder will then be listed as content type options for all
publications, in the Search for other options list.

2.2.34 Access Token Refreshment Timing

At CUE installations where login is managed by CUE User Manager or Google/Facebook, the
client is required to refresh its access tokens periodically. By default, CUE refreshes its access
token 30 seconds before it is due to expire. You can, however modify this default by adding a
refreshTokenBeforeInSeconds property to one of your configuration files. You can, for example
increase the setting to 60 seconds as follows:

refreshTokenBeforeInSeconds: 60

2.2.35 Environment Visualization

Most CUE installations have multiple environments: a production environment, a test environment
and a staging environment. Many CUE users will only ever work in the production environment,
but others (developers, testers, maintenance staff and so on) may frequently switch between
environments. For such users, it is very important to keep track of which system they are working in:

Copyright © 2015-2023 Stibo DX A/S Page 45

CUE Tech Guide

much greater care is needed when working in a production environment that when working in a test
environment.

It is therefore possible to set a couple of environment properties when configuring CUE to
clearly visualize which environment this instance is running in. Adding the following to one of your
configuration files, for example:

environment:
 name: "Test"
 color: "yellow"

will cause CUE's menu bar to be displayed with a yellow background and will also display the name
"Test" in the menu bar. This makes it a lot easier for users to distinguish the CUE instances from one
another.

You can use any valid CSS color specification when setting the color property.

2.2.36 Disabling Search-As-You-Type

By default, the CUE search function starts searching as soon as you start typing. Every character
you type starts a new, more tightly specified search. In most cases, this is the most efficient way to
execute searches: you will often see the result you are looking for before you have completed typing the
search term in your head. However, for some organizations with very large databases, this method of
searching may actually prove too demanding, and cause performance issues. It is therefore possible to
disable it.

To disable the search-as-you-type feature, add the following property setting to one of your
configuration files:

searchAsYouType: false

In order for the search-as-you-type feature to work, CUE adds wildcards to the search terms you
enter. When you disable it, these wild cards are no longer added. Search will therefore return
different (narrower) result sets with search-as-you-type disabled than it does when the feature is
enabled.

2.2.37 Enabling User Tracking

CUE's user tracking feature must never be activated unless you have first entered a written
agreement with Stibo DX.

CUE's user tracking feature is a product development aid intended to help Stibo DX developers
improve the CUE user experience. When it is enabled, CUE user activity is monitored, recorded and
sent to Stibo DX for analysis, where it may be stored for up to six months. The data captured includes
button clicks, link clicks, page views, JavaScript errors, browser types and geographic regions. No
personally identifiable information is collected: IP addresses are 2-byte masked blocks and cookie user
IDs contain no personally identifiable information. Nevertheless, the collection of such data is strictly
controlled by law in many countries. Therefore, this feature should only be enabled if:

• The customer's CUE users have consented to the collection of the data

• The customer has granted Stibo DX permission to collect and use the data, in writing

To enable user tracking, add the following property settings to one of your configuration files:

Copyright © 2015-2023 Stibo DX A/S Page 46

CUE Tech Guide

analyticsConfig:
 enabled: true
 customerId: 'jira-project-key'

If the analyticsConfig property is not present in your configuration or if analyticsConfig/
enabled is set to any value other than true, then the user tracking feature will remain disabled.

analyticsConfig/customerId must be set to your organization's project ID in the Stibo DX Jira
system (that is, the project key you use when reporting CUE bugs to Stibo DX). In other words if your
CUE bug report URLs end with /MYPROJECT-nnn, then your customerId is MYPROJECT.

2.2.38 Automated Curation With Sophi

Sophi is a third-party web service (https://www.sophi.io/) that uses AI to offer automated content
curation based on a sophisticated analysis of both website content and usage data. It can be used with
CUE to provide automated desking of content on section pages and realtime feedback regarding the
performance of published content.

In order to enable this feature, you must first set up a Sophi account, and obtain the credentials you
need to access Sophi services. Once you have done so, you can configure your CUE installation to
support automated curation. You can apply automated curation to all your content, or just parts of it.

Stibo DX accepts no responsibility for the security of content or usage data exported to Sophi, or to
any other third party service.

How does the automated curation work? First of all, Sophi must be provided with the information
it needs. This is done in two ways. Special Javascript code provided by Sophi is included in all of
a publication's content pages. This monitoring code ensures that lots of information about user
interaction with the publication content is sent to Sophi. Secondly, the Content Store must send actual
content to Sophi every time a content item is published or republished on the site. Sophi uses these
inputs (article content plus article usage) to assign a performance score (called a Sophi score) to each
content item on the site.

Sophi uses the information it gathers to create curation recommendations, which are passed to CUE by
filling special Sophi-curated lists. In each section of your publication that you want to be automatically
curated you must create one or more lists, and make them available to Sophi. These curated lists will
be under Sophi's control, and filled with content items by Sophi. CUE users will not be able to open or
edit them, only desk them on the section page.

The use of lists as an interface to Sophi means that you can mix automated and manual curation
throughout a publication. You can choose to only make use of automated curation in some sections,
and within each section page you can manually curate some areas and desk curated lists in others.
Sophi continuously monitors the publication content and its performance and updates the content of
the curated lists accordingly.

Content item Sophi scores are used to generate icons called halos for display in CUE content cards. A
content item's halo provides a graphical indication of how well it is performing in its current location
on the section page, using a combination of color and size. Green indicates satisfactory or good
performance and red indicates unsatisfactory/poor performance. The size of the halo's inner circle
represents the content item's current Sophi score.

Setting up automated curation is quite complicated, and requires configuring several components of a
CUE installation, not just CUE itself. These are the setup tasks you need to carry out:

Copyright © 2015-2023 Stibo DX A/S Page 47

https://www.sophi.io/

CUE Tech Guide

1. Create a Sophi account and obtain from Sophi all the information you need (endpoint URLs, login
credentials, tracking code and instructions for how to insert the tracking code).

2. Insert the tracking code in your publication templates in accordance with Sophi's instructions.
Precisely where and how you do this will depend on what front-end technology you use for your
publications.

3. Decide where you want to make use of automated curation (which parts of which section pages).
You can fill an entire section page with automatically curated content, or limit the use of curated
content to specific areas on a section page.

4. Create the required lists in CUE. You will need to create at least one list in each section where you
want to make use of automated curation, but you might possibly need to create more than one list
in some sections. Note that a Sophi-curated list cannot be used to hold anything other than Sophi
recommendations. Once you declare that the list is a curated list (see section 2.2.38.2), you can
no longer edit its contents in CUE.

5. Get the web service URIs of each of the lists you have created. You can do this by using the web
service to search for each list you have created. Enter a URI like this in your browser URI field:

https://content-store-host/webservice/publication/publication-name/escenic/lists?
searchTerms=list-name

This returns an XML document. You will find the list's URI in one of the /feed/entry/link
elements of that document (the one where the rel attribute is set to "edit").

You will need these URIs when configuring CUE.

6. Configure a Content Store proxy service that CUE can use to access Sophi. For further
information about this, see section 2.2.38.1.

7. Configure the CUE Zipline Sophi plugin. The Sophi plugin performs two functions:

• It monitors the Content Store, and every time a content item is published or republished, it
sends the content item to Sophi for analysis.

• It polls Sophi at regular intervals for changes to curated lists, and applies the changes supplied
by Sophi.

For instructions on how to configure the Sophi plugin, see The Sophi Plugin.

8. Configure CUE itself - see section 2.2.38.2 for details.

9. In CUE, desk the curated lists in the required locations.

2.2.38.1 Sophi Proxy Service Configuration

In order for CUE to be able to display halos representing content item performance, it must be able to
retrieve content items' Sophi scores from Sophi, for which authentication is necessary. Instead of CUE
itself being configured with the necessary credentials, all requests to Sophi are directed via a suitably
configured Content Store proxy service. The proxy service forwards all requests to Sophi, and forwards
all responses back to CUE.

For general information about how to create a Content Store proxy service, see Content Store Proxy
Services. For information on how to set up a proxy service to provide the OAuth authentication
required by Sophi, see OAuth Client Credentials Flow.

A correctly configured proxy service for accessing the Sophi halo service should consist of three
configuration layer .properties files that look something like this:

Copyright © 2015-2023 Stibo DX A/S Page 48

https://www.sophi.io/
http://docs.escenic.com/zipline-doc-user-guide/1.15/she_sophi_plugin.html
http://docs.escenic.com/ece-advanced-temp-dev-guide/7.16/content_engine_proxy_service.html
http://docs.escenic.com/ece-advanced-temp-dev-guide/7.16/content_engine_proxy_service.html
http://docs.escenic.com/ece-advanced-temp-dev-guide/7.16/oauth_client_credentials_flow.html

CUE Tech Guide

/com/escenic/webservice/proxy/ProxyResourceConfig.properties
serviceMapping.sophi-halos=https://halo-api.sophi.io/

/com/escenic/webservice/proxy/
ProxyResourceAuthorizationHeaderProvider.properties

provider.sophi-halos=./WebServiceAuthorizationHeaderProvider

/com/escenic/webservice/proxy/
WebServiceAuthorizationHeaderProvider.properties

$class=com.escenic.webservice.proxy.auth.OAuth2ClientCredentialsAuthorizationHeaderProvider
tokenUrl=https://sophi-prod.auth0.com/oauth/token
clientId=client-id
clientSecret=client-secret
customField.audience=https://api.sophi.io
customField.grant_type=client_credentials

where client-id and client-secret are the credentials supplied by Sophi

2.2.38.2 Sophi CUE Configuration

Configuring CUE to make use of Sophi automated curation involves the following steps:

1. Decide where you want to make use of automated curation (which parts of which section pages).
You can fill an entire section page with automatically curated content, or limit the use of curated
content to specific areas on a section page.

2. Create the required lists in CUE. You will need to create at least one list in each section where you
want to make use of automated curation, but you might possibly need to create more than one
list in some sections. Note that a Sophi-curated list cannot be used for anything else. Once you
declare that the list is a curated list (see step 4 below), you can no longer edit its contents in CUE.

3. Get the web service URIs of each of the lists you have created. You can do this by using the web
service to search for each list you have created. Enter a URI like this in your browser URI field:

https://content-store-host/webservice/publication/publication-name/escenic/lists?
searchTerms=list-name

This returns an XML document. You will find the list's URI in one of the /feed/entry/link
elements of that document (the one where the rel attribute is set to "edit").

4. Add the following to one of your CUE configuration files:

sophiIntegration:
 sophiControlledLists:
 - 'https://content-store-host/webservice/escenic/list/list-id'
 - 'https://content-store-host/webservice/escenic/list/list-id'
 ...etc
 performanceUpdateIntervalMinutes: 5

Copyright © 2015-2023 Stibo DX A/S Page 49

CUE Tech Guide

 performanceScoreType: '30m'

where:

sophiControlledLists
Contains the URIs of the curated lists you have created (see section 2.2.38 for a description
of how to find these URIs).

performanceUpdateIntervalMinutes
Specifies how frequently you want the halos displayed on content cards to be updated.

performanceScoreType
Must be set to one of the following values: 10m, 30m, 60m or 180m. It specifies the length of
time (in minutes) over which content item performance is evaluated when generating the
Sophi scores from which halos are generated. The default value is 30m, which means that
when a content item's halo is updated, it is based on the content item's performance during
the preceding 30 minutes.

5. Save the file.

6. Enter:

dpkg-reconfigure cue-web-3.18

Once you have done this, the lists you have added to the sophiControlledLists entry in the
configuration file will be under Sophi's control. You will no longer be able to open them for editing in
CUE

Copyright © 2015-2023 Stibo DX A/S Page 50

CUE Tech Guide

3 Installing and Configuring Plug-ins

CUE's capabilities can be extended by installing plug-ins. CUE plug-ins fall into three categories:

• Base plug-ins supplied by Stibo DX that provide self-contained functional extensions. These plug-
ins have no dependencies other than CUE itself and freely available system components such as
the nodeJS engine or Java, unless specifically stated. All the information you need to install and
configure base plug-ins is here. The following base plug-ins are currently available:

cue-content-duplication-enrichment-service
This plug-in adds content duplication functions to the home page Search and Latest
Opened panels in CUE and to the Search side panel After installing the plug-in, the context
menu displayed by right-clicking or long-pressing a content item in these panels will contain
two new options, Duplicate and Duplicate as. These options allow you to quickly make
copies of content items.

cue-spellcheck
This plug-in adds a spelling/grammar checker to CUE. cue-spellcheck is a micro-
service that can potentially connect CUE to a number of different language service providers.
Currently, it will only connect to a LanguageTool service. LanguageTool is an open source,
multilingual spelling/grammar checker. There are both free and paid public LanguageTool
services available, and it is also possible to run your own private LanguageTool service.

Base plug-in packages follow CUE version numbering: you should only install base plug-ins that
have the same version number as CUE.

• CUE plug-ins supplied by Stibo DX. These CUE plug-ins are dependent on Content Store plug-ins
as follows:

cue-plugin-live
Depends on CUE Live.

cue-plugin-menu-editor
Depends on the CUE Menu Editor plug-in.

cue-plugin-video
Depends on the CUE Video plug-in.

These plug-ins are automatically installed together with CUE. Any configuration that might be
required is described in the appropriate Content Store plug-in guide.

• Third-party plug-ins that are not made by Stibo DX. These plug-ins may or may not have
dependencies other than CUE itself. The information you need to install and configure these plug-
ins must be provided by the plug-in supplier.

Base plug-ins are installed in the same way as CUE itself, using apt-get install, and can either
be installed together with CUE, or at any time later. To install the cue-content-duplication-
enrichment-service plug-in together with CUE, for example, you would do as follows:

apt-get update
apt-get install cue-web-3.18 cue-content-duplication-enrichment-service-3.18

To install it on its own after the installation of CUE, you would only need to enter:

apt-get update

Copyright © 2015-2023 Stibo DX A/S Page 51

https://languagetool.org/

CUE Tech Guide

apt-get install cue-content-duplication-enrichment-service-3.18

For additional instructions regarding the installation of the cue-content-duplication-
enrichment-service plug-in, see section 3.1.

3.1 cue-content-duplication-enrichment-service
This plug-in depends on nodeJS, version 14.16.0 or higher. The node command must be available in
$PATH. To check whether this is the case, enter:

$ which node

If this command does not return the path of the node executable, then you need to either install it
or add its location to $PATH. If node is available, make sure you check its version, since the version
installed by default on Ubuntu systems is too old:

$ node -v

If the version number is less than 14.16.0, then you need to replace it with a newer version. For advice
on how to do this on Ubuntu, see (for example) this page.

3.1.1 Installing cue-content-duplication-enrichment-service

You can install the cue-content-duplication-enrichment-service plug-in either at the
same time as you install CUE itself, or at any time later. The version number of cue-content-
duplication-enrichment-service must match the version number of CUE. To install cue-
content-duplication-enrichment-service on its own after the installation of CUE, log in as
root and enter:

apt-get update
apt-get install cue-content-duplication-enrichment-service-3.18

This installs the enrichment service and starts it immediately.

3.1.2 Configuring cue-content-duplication-enrichment-service

To configure the cue-content-duplication-enrichment-service:

1. Log in as root if necessary.

2. Open /etc/escenic/content-duplication-service-3.18/content-duplication-
service.yaml in an editor and add the following content:

server:
 port: port-number
ziplineEndpoint: http://ziplinehost/cue-print-zipline/escenic/convert/default
endpoint: http://content-store-host/webservice/index.xml

Copyright © 2015-2023 Stibo DX A/S Page 52

https://tecadmin.net/install-latest-nodejs-npm-on-ubuntu/

CUE Tech Guide

maxPayloadLimit: "max-payload-size"

where:

• port-number is your preferred port number (the default is 8082)

• ziplinehost is the domain name of your CUE Zipline service host (see note below)

• content-store-host is the domain name of your Content Store host (see note below

• max-payload-size is the maximum amount of data that will be handled by the duplication
function. The default maximum size is 1mb. If this is insufficient you can set it to a larger
value. You can specify the payload size using a variety of units: b, kb, mb, etc. - for all options,
see the documentation of the bytes node.js library.

3. You can also optionally add configurations like this for handling unmatched relations:

unmatchedRelationsMapping:
 - contentType: storyline
 relationGroup: relations

Without such a section, when you duplicate a content item as a different content type, only
relations that have a matching relation type are copied to the new content item. Specifying
unmatchedRelationsMapping allows you prevent these unmatched relations being lost. For
each target content type, you can specify a relation group to which unmatched relations can be
copied.

4. Save the file.

5. Restart the service as follows:

/etc/init.d/content-duplication-service restart

Note: The ziplineEndpoint property is only required if you need the duplication service
to support the conversion of classic rich text-based stories to storyline containers, since this
functionality is dependent on CUE Zipline.

You also need to configure CUE to access the duplication service. To do this:

1. Create a file called /etc/escenic/cue-web/content-duplication-service.yml, open it
in an editor and add the following content:

enrichmentServices:
 - name: "Duplicate Service"
 href: "http://myhost:port-number/contentDuplicationService"
 title: "Duplicate Service"
 triggers:
 - name: "on-duplicate"
 properties: {}

authorizedEndpoints:
 - "http://myhost:port-number/"

extendedContextMenuItems:
 - name: "duplicate-service"
 title: "Duplicate"
 trigger: "on-duplicate"
 - name: "duplicate-as-service"
 title: "Duplicate as ..."

Copyright © 2015-2023 Stibo DX A/S Page 53

https://www.npmjs.com/package/bytes

CUE Tech Guide

 trigger: "on-duplicate"

where:

• myhost is your CUE host's domain name

• port-number is the same port number you specified in the duplication service configuration
file

2. Save the configuration file.

3. Apply your configuration changes by entering:

dpkg-reconfigure cue-web-3.18

You should now be able to duplicate content items using the Duplicate and Duplicate as context
menu options in CUE.

3.2 cue-spellcheck
cue-spellcheck is a micro-service that connects CUE to an external language service provider.
Currently, it will only connect to a LanguageTool service. LanguageTool is an open source, multilingual
spelling/grammar checker. There are both free and paid public LanguageTool services available, and it
is also possible to run your own private LanguageTool service.

3.2.1 Installing cue-spellcheck

You can install the cue-spellcheck plug-in either at the same time as you install CUE itself, or at
any time later. The version number of cue-spellcheck must match the version number of CUE. To
install cue-spellcheck on its own after the installation of CUE, log in as root and enter:

apt-get update
apt-get install cue-spellcheck-3.18

3.2.2 Configuring cue-spellcheck

To configure cue-spellcheck:

1. Log in as root if necessary.

2. Open /etc/escenic/cue-spellcheck/cue-spellcheck.yaml in an editor. It will contain
something like this:

providers:
 - type: language_tool
 options:
 url: "https://api.languagetool.org"
 username: "user@company.com"
 apiKey: "xxxxxxxxxxxx"
localeProviderMap:
 en-US: language_tool
 en-GB: language_tool
 de-DE: language_tool
server:
 applicationConnectors:
 - type: http
 port: 9690

Copyright © 2015-2023 Stibo DX A/S Page 54

https://languagetool.org/

CUE Tech Guide

 adminConnectors:
 - type: http
 port: 9691
logging:
 level: INFO
 loggers:
 com.escenic.cue.spellcheck: ERROR

3. Edit the highlighted fields to match your requirements:

 url: "https://api.languagetool.org"

Set this property to point to the LanguageTool service you want to use:

• https://api.languagetool.org is a free public service. It is rate-limited, and therefore
only really useful for test purposes.

• https://api.languagetoolplus.com/ is a paid public service (sign up at https://
languagetool.org/proofreading-api). If you use this service, you must configure the
username and apiKey as described below.

• Alternatively you can enter the URL of your own private instance.

 username: "user@company.com"

Set this property to the username you use to login to LanguageTool. This property is require only
if you use https://api.languagetoolplus.com/ as the url.

 apiKey: "xxxxxxxxxxxx"

Set this property to the API key of LanguageTool. This property is require only if you use
https://api.languagetoolplus.com/ as the url.

localeProviderMap:
 en-US: language_tool
 en-GB: language_tool
 de-DE: language_tool

Add or remove lines to specify the languages for which you require assistance, using the
appropriate IETF BCP47 language tag and the keyword language_tool. See https://
dev.languagetool.org/languages for a list of supported languages.

No other settings should be modified.

4. Save the file.

3.2.3 Starting cue-spellcheck

To start cue-spellcheck, enter:

/etc/init.d/cue-spellcheck start

Once it is started, cue-spellcheck listens for requests from CUE on the port specified in the
configuration file (server/applicationConnectors/port). In a production environment, cue-
spellcheck will normally be accessed via an nginx server. In order to complete the setup, you need
to configure CUE with the cue-spellcheck's API endpoint (see section 2.2.10).

Copyright © 2015-2023 Stibo DX A/S Page 55

https://tools.ietf.org/search/bcp47
https://dev.languagetool.org/languages
https://dev.languagetool.org/languages

CUE Tech Guide

3.2.4 Specifying Publication Language/Enabling the Spelling Checker

To enable spelling checks in a publication and specify the required language, you need to set the
publication'scom.escenic.cue.spellcheck.language feature. Features are publication properties set in
Content Store feature resource files. For general information about feature resources, see The feature
Resource. For information about how to update publication resources, see Update Resources. If this
property is not set, then spelling checks are disabled in the publication.

Copyright © 2015-2023 Stibo DX A/S Page 56

http://docs.escenic.com/ece-resource-ref/7.18/com_escenic_cue_spellcheck_language.html
http://docs.escenic.com/ece-pub-design-guide/7.18/the_feature_resource.html
http://docs.escenic.com/ece-pub-design-guide/7.18/the_feature_resource.html
http://docs.escenic.com/ece-server-admin-guide/7.18/update_resources.html

CUE Tech Guide

4 Extending CUE

CUE is more than a simple editor for Content Store - it's an extensible platform. It includes three
extension mechanisms that you can use to add your own functionality and to integrate external
services into your editorial workflows. The extension mechanisms are:

Web components
CUE web components are HTML/CSS/Javascript components that you can use to add custom
functionality to CUE. See section 4.1 for further information.

Enrichment services
Enrichment services are a very powerful and flexible mechanism for extending CUE's
functionality. An enrichment service is an HTTP service that communicates with CUE via a
very simple protocol. You can implement your own enrichment services to provide additional
functionality and integrate CUE with other systems in various ways. See section 4.2 for further
information.

Drop resolvers
Drop resolvers are HTTP services, rather like enrichment services. Drop resolvers, however, are
specifically designed to handle the processing and import of foreign objects dropped into CUE.
See section 4.3 for further information.

URL-based content creation
CUE lets you create a draft content item by simply passing a URL to a browser. A script running
in some other application such as Trello, Google Sheets or Slack can simply construct a CUE
URL containing the details of a new content item and pass the URL to a browser. CUE will then
start in the browser and create the requested content item, ready for the user to continue editing
(if required), save and publish. See section 4.4 for further information.

Logout triggers
A logout trigger is a simple HTTP GET request that is sent to a specified URL when the user logs
out from CUE. It provides a mechanism for integrators to automatically perform other actions
(such as logging out of a VPN) on logout from CUE. For further information see section 4.6.

When a problem arises in CUE, it is sometimes difficult to determine whether the problem is in CUE
itself or in an extension you have added. CUE therefore includes a safe mode feature that lets you
easily disable extensions as a diagnostic aid. For details, see section 4.7.

4.1 Web Components
Web components is the name given to a set of features being added to the W3C HTML and DOM
specifications that support the creation of reusable components in web documents and web
applications.

CUE makes use of this technology to enable the following types of extensions:

Editor side panel
An editor side panel is displayed as a pop-out panel on the left side of a CUE editor window
(similar to an editor Search panel). A custom editor side panel works in the same way as the
standard side panels: a new button is added to the column on the left side of the display, and
selecting this button opens and closes the panel.

Copyright © 2015-2023 Stibo DX A/S Page 57

https://en.wikipedia.org/wiki/Web_Components

CUE Tech Guide

Editor metadata section
An editor metadata section is displayed in the pop-out attributes panel on the right side of a
CUE editor window (similar to the General info and Authors sections). A metadata section
works in the same way as the standard attributes sections: a new button is added to the column
on the right side of the display, and selecting this button opens and closes the panel, focused on
the appropriate section.

Custom field editor
A custom field editor extension changes the appearance and behavior of a content item field.
You can, for example, configure CUE to display an integer field in a content item as a graphical
slider instead of displaying a simple text field. You can also use it to display much more complex
components containing many different controls and elements: a color picker component that
offers the user several different ways to choose a color, for example.

Custom storyline element field editor (Content Store only)
A custom storyline element field editor extension changes the appearance and behavior of a
storyline element field. It works in much the same way as a custom field editor, and enables the
same kinds of possibilities. The map and table included in the CUE Content Store's starter pack
are implemented using custom storyline element field editors.

Home page panel
A home page panel occupies the main work area of the CUE home tab. A custom home page
panel works in the same way as the standard Search and Sections panels: a new button is
added to the column on the left side of the display, and selecting this button displays the panel
in the main work area.

Home page metadata section
A home page metadata section is displayed in the pop-out attributes panel on the right side
of a CUE editor window (similar to the General info and Pages sections displayed with
the Sections home page panel). A metadata section works in the same way as the standard
attributes sections: a new button is added to the column on the right side of the display, and
selecting this button opens and closes the panel, focused on the appropriate section.

CUE provides some "native" CUE controls for you to use in your web components. They can be used
in both editor and home page panels, and in editor and home page metadata sections. These controls
make it much easier to create web components with the correct CUE look and feel. They will be
automatically updated to reflect any UI changes made in future versions of CUE, and may also benefit
from any applicable improvements made to future versions of CUE. For this reason you are strongly
recommended to use these controls in your web components where possible. For full details, see
section 4.1.3.

All you need to do to add a web component to CUE is:

• Create a JavaScript file containing the definition of your web component.

• Put the web component definition in a web location that is accessible to CUE.

• Add information about the web component to a YAML configuration file and save the file in
the CUE configuration folder (/etc/escenic/cue-web). You can either create a separate
configuration file for each of your web components, or create a single configuration file for all of
them.

This process is described in more detail in the following sections.

Copyright © 2015-2023 Stibo DX A/S Page 58

CUE Tech Guide

4.1.1 Creating a Web Component

A web component is an ECMAScript (ES) module. It contains:

• A class extending HTMLElement. The class can use the shadowRoot to define local CSS styles.
These styles are only applied to HTML elements inside that shadowRoot – they will not affect any
elements in documents where the web component is displayed.

• A statement to register the class as a custom element. The custom element name must contain a -.

Here is a skeleton web component that you can use as a basis for your own web components:

/**
 * Creating the web component
 */
class MyComponent extends HTMLElement {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host { width: 100%; display: block; } /* Styles the web component tag */
 </style>

 <!-- Add your web component HTML here -->
 `;
 }

 connectedCallback() {
 console.log('The CUE interface of the web component:', this.cueInterface);
 // The web component is now attached.
 // Add your logic here.
 }

 disconnectedCallback() {
 // The web component is now detached.
 // Add your clean-up logic here.
 }
}
customElements.define('my-component', MyComponent);

/**
 * Creating the icon (if required)
 */
class MyComponentIcon extends HTMLElement {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `<!-- Add your web component icon HTML here -->`;
 }

 connectedCallback() {
 console.log('The CUE interface of the icon:', this.cueInterface);
 // The icon is now attached.
 // Add your logic here.
 }

 disconnectedCallback() {

Copyright © 2015-2023 Stibo DX A/S Page 59

CUE Tech Guide

 // The web component is now detached.
 // Add your clean-up logic here.
 }
}

customElements.define('my-component-icon', MyComponentIcon);

Field editor web components have no use for an icon, so in this case the icon class can be omitted.

Drag and drop from web components

You can drag objects from all web components except rich text field extensions to drop zones in CUE.
Anywhere in the CUE interface that you can drop an uploaded file, you can also drop an object that
has been dragged from a web component, as long the object is correctly constructed. A correctly
constructed draggable object is a JSON object with a single property, files. This property is an array
of objects, each object being composed of three properties:

name
The file name of this object

mimeType
The mime type of this object

dataURL OR url
For external objects, the third property is called dataURL, and holds the content of the object,
encoded as a data URL. The dropped object may, however, in some cases be an existing CUE
content item, in which case the third property is called url and holds the URL of the content
item.

The entire JSON object must be supplied as the drag event's dragData property and be assigned the
mime type application/x-web-component-data.

4.1.2 The CUE Web Component API

A web component in general contains a class that extends HTMLElement. For building
CUE web components, CUE provides its own base class that extends HTMLElement,
cue.core.webcomponents.CUEElement, plus a number of subclasses for use in specific types of
CUE extension. To make a CUE web component you need to extend one of these subclasses.

You can download a web component API support package from Stibo DX's NPM registry, https://
npm.escenic.com/ (authentication token required). The package is called @escenic/cue-web-
components. It contains:

• Working code examples illustrating how to use various parts of the API.

• A set of type definitions. These type definitions can be used by many editors and IDEs to provide
editing assistance (object, method and property name suggestions) for the web component API.

cue.core.webcomponents.CUEElement itself is defined as follows:

export abstract class CUEElement extends HTMLElement
 implements webcomponent.CUEElement {
 public user: webcomponent.User;
 public endpoints: StringMap<URI>;
 public credentials: StringMap<string>;
 public dialog: Dialog;
 public notification: webcomponent.Notification;

Copyright © 2015-2023 Stibo DX A/S Page 60

http://dataurl.net/#about
https://npm.escenic.com/
https://npm.escenic.com/

CUE Tech Guide

 public abstract getTitle(): Promise<Nullable<string>>;
 public abstract getLink(): Promise<webcomponent.Nullable<webcomponent.Link>;
}

This class provides four properties and two functions:

user
The current user

endpoints
The URL(s) of CUE's back end(s)

credentials
The credentials needed to access CUE's back end(s), available as:

credentials.escenic
credentials.newsgate
credentials.dc-x

dialog
An interface that exposes methods for creating dialogs of various kinds. For details, see section
4.1.2.15.

notification
An interface that exposes methods for showing and hiding notifications from web components.
For details, see section 4.1.2.14.

getTitle()
Returns the title of the current editor.

getLink()
Returns the URL of the content item being edited.

The subclasses fall into three main groups:

Home page panel / Editor side panel extensions
There are two classes you can use for adding home page/editor side panels:

cue.core.webcomponents.SidePanel
Extend this class to display a home page panel that occupies the main work area of the
CUE home tab or a pop-out panel on the left side of a CUE editor window. A custom home
page panel works in the same way as the standard Search and Sections panels: a new
button is added to the column on the left side of the display, and selecting this button
displays the panel in the main work area. On an editor page, it is displayed as a pop-out
panel on the left side, similar to an editor Search panel.

cue.core.webcomponents.ListEditor
Extend this class to display a pop-out panel on the left side of a CUE list editor window.
The ListEditor class can only be used in this specific context.

Metadata panel extensions
There are several classes you can use for adding custom sections to the pop-out metadata panel
displayed on the right hand side of various pages. They all work in the same way: a new button is
added to the column on the right side of the display, and selecting this button opens and closes
the panel, focused on the appropriate section. The following classes are available:

cue.core.webcomponents.HomePageMetadataPanel
Extend this class to add a custom metadata panel section to the following home page
panels:

Copyright © 2015-2023 Stibo DX A/S Page 61

CUE Tech Guide

• The Search panel

• The Recent panel

• The Archive panel

cue.core.webcomponents.AssignmentEditorMetadataPanel
Extend this class to add a custom metadata panel section to CUE assignment editors.

cue.core.webcomponents.SectionsMetadataPanel
Extend this class to add a custom metadata panel section to the Sections home page
panel.

cue.core.webcomponents.SectionPageMetadataPanel
Extend this class to add a custom metadata panel section to the CUE section page editor.

cue.core.webcomponents.TextEditorMetadataPanel
Extend this class to add a custom metadata panel section to CUE content editors (rich
text).

cue.core.webcomponents.StorylineEditorMetadataPanel
Extend this class to add a custom metadata panel section to CUE content editors
(storyline).

cue.core.webcomponents.StoryFolderEditorMetadataPanel
Extend this class to add a custom metadata panel section to CUE story folder editors.

cue.core.webcomponents.ContentSummaryEditor
Extend this class to add functionality to content summaries.

Editor extensions
There is currently only one such extension:

cue.core.webcomponents.CustomEditorPanel
Extend this class to add a custom editor panel to the storyline editor:

Custom field editors
There are two classes for creating custom field editors:

cue.core.webcomponents.CustomFieldEditor
Extend this class to change the appearance and behavior of a content item field (make an
integer field in a content item be displayed as a graphical slider, for example).

cue.core.webcomponents.CustomStoryElementEditor
Extend this class to change the appearance and behavior of a story element field (make an
integer field in a story element be displayed as a graphical slider, for example).

These classes and their use are described in more detail in the following sections.

The CUE base classes replace an earlier method of implementing CUE web components based on
passing a cueInterface object from CUE to the web component. This mechanism is still available
but is deprecated – the cueInterface object will be withdrawn in a future release. You should
therefore use the new API described here when implementing new web components. If you need
information about the old cueInterface-based API, please refer to the CUE 3.4 documentation.

Copyright © 2015-2023 Stibo DX A/S Page 62

CUE Tech Guide

4.1.2.1 SidePanel

cue.core.webcomponents.SidePanel can be used to display either a home page panel that
occupies the main work area of the CUE home tab or a pop-out panel on the left side of a CUE editor
window (similar to an editor Search panel).

It is defined as follows:

export abstract class SidePanel extends CUEElement
 implements webcomponent.Panel {
 public name: string; // Name of panel
 public homeScreen: boolean; // true: home page panel, false: editor side panel
 public active: boolean; // Active state of the panel

 // Function to be called whenever active state changes
 public abstract addActiveWatcher(fn: (active: boolean) => void): () => void;

 // Function to be called whenever active editor changes
 public abstract addActiveEditorWatcher(
 callback: (editor: Nullable<webcomponent.CUEElement>) => void
): () => void;
}

When SidePanel is used as editor side panel, then TextEditorMetadataPanel's methods are also
available.

4.1.2.1.1 SidePanel Example Configuration

sidePanels:
 - id: "twitter-home-panel"
 name: "Twitter Timelines"
 directive: "cue-custom-panel-loader"
 isAngular: true
 webComponent:
 modulePath: "webcomponents/twitter/twitter-home-panel.js"
 icon: "twitter-home-panel-icon"
 mimeTypes: []
 homeScreen: true
 metadata: []
 active: false
 order: 705

4.1.2.1.2 SidePanel Example Implementation

window.twttr = (function (d, s, id) {
 var js,
 fjs = d.getElementsByTagName(s)[0],
 t = window.twttr || {};
 if (d.getElementById(id)) return t;
 js = d.createElement(s);
 js.id = id;
 js.src = 'https://platform.twitter.com/widgets.js';
 fjs.parentNode.insertBefore(js, fjs);

 t._e = [];
 t.ready = function (f) {
 t._e.push(f);
 };

Copyright © 2015-2023 Stibo DX A/S Page 63

CUE Tech Guide

 return t;
})(document, 'script', 'twitter-wjs');
/**
 * Twitter Timeline
 */
class TwitterTimeline extends cue.core.webcomponents.SidePanel {
 constructor() {
 super();
 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host { margin: 0 20px 0 20px; padding: 0; width: 100%; display: block; }
 </style>
 <h1>Twitter Timelines</h1>
 <div id="timeline"></div>
 `;
 }

 connectedCallback() {
 twttr.ready(() => {
 twttr.widgets.load();
 twttr.widgets.createTimeline(
 {
 sourceType: 'profile',
 screenName: 'escenic',
 },
 this.shadowRoot.querySelector('#timeline'),
 {
 height: 1000,
 }
);
 });
 }
}

customElements.define('twitter-home-panel', TwitterTimeline);

/**
 * Twitter icon
 */
class TwitterIcon extends cue.core.webcomponents.SidePanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host { margin: 0 0px 0 0px; width: 26px; display: inline; float: left;
 margin-right: 18px; }
 img { width: 20px; position: relative; top: 4px; left: 10px; }
 </style>

 `;

 this.activeIconPath = 'twitter-home-panel-icon-active.png';
 this.inactiveIconPath = 'twitter-home-panel-icon.png';
 }

 connectedCallback() {

Copyright © 2015-2023 Stibo DX A/S Page 64

CUE Tech Guide

 this.activeStateChanged(this.active);
 this.addActiveWatcher(active => {
 this.activeStateChanged(active);
 });
 }

 activeStateChanged(active) {
 let img = this.shadowRoot.querySelector('img.icon');
 if (active) {
 img.src = this.getAbsolutePath(this.activeIconPath);
 } else {
 img.src = this.getAbsolutePath(this.inactiveIconPath);
 }
 }

 getAbsolutePath(path) {
 const baseURI = import.meta.url;
 return baseURI.substring(0, baseURI.lastIndexOf('/') + 1) + path;
 }
}

customElements.define('twitter-home-panel-icon', TwitterIcon);

4.1.2.2 ListEditor

cue.core.webcomponents.ListEditor can be used to display a pop-out panel on the left side of
a CUE list editor window (similar to a Search panel).

It is defined as follows:

export abstract class SidePanel extends CUEElement
 implements webcomponent.Panel {
 public name: string; // Name of panel
 public homeScreen: boolean; // true: home page panel, false: editor side panel
 public active: boolean; // Active state of the panel

 // Function to be called whenever active state changes
 public abstract addActiveWatcher(fn: (active: boolean) => void): () => void;

 // Function to be called whenever active editor changes
 public abstract addActiveEditorWatcher(
 callback: (editor: Nullable<webcomponent.CUEElement>) => void
): () => void;
}

abstract class ListEditor extends cue.core.webcomponents.CUEElement {

 // Returns active list
 getList(): Nullable<List>;

 // Function to be called whenever active list changes
 addListWatcher(watcher: () => void): () => void;

}

interface List {
 link: Nullable<Link>;
 title: Nullable<sting>;
 items: ListItem[];

Copyright © 2015-2023 Stibo DX A/S Page 65

CUE Tech Guide

 changelogURI: Nullable<URI>;
 listPoolURI: Nullable<URI>;
 section: Nullable<string>;
 publication: Nullable<Link>;
}

interface ListItem {
 about: URI;
 handle: Nullable<URI>;
 pinned: boolean;
 priority: number;
}

4.1.2.2.1 ListEditor Example Configuration

sidePanels:
 - id: "list-info"
 name: "List Info"
 directive: "cue-custom-panel-loader"
 mimeTypes: ["x-ece/list"]
 homeScreen: false
 requires: ["escenic"]
 webComponent:
 modulePath: "webcomponents/list-info/list-info.js"
 icon: "list-info-icon"
 order: 709

4.1.2.2.2 ListEditor Example Implementation

class ListInfo extends cue.core.webcomponents.ListEditor {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 padding: 0;
 width: 100%
 }
 h1 {
 color: #9c9c9c;
 font-size: 24px;
 font-weight: 300;
 }
 </style>

 <h1>List Info</h1>

 <div id="list-info-wrapper">
 <div id="title">
 List Title:

 </div>

 <div id="length">
 List Length:

Copyright © 2015-2023 Stibo DX A/S Page 66

CUE Tech Guide

 </div>
 </div>
 `;

 this.blobUrl = undefined;
 }

 connectedCallback() {
 this.addListWatcher(() => this.showListInfo());
 this.showListInfo();
 }

 showListInfo() {
 const list = this.getList();
 this.shadowRoot.querySelector('#title .right').innerHTML = list.title;
 this.shadowRoot.querySelector('#length .right').innerHTML =
 list.items.length;
 }
}
customElements.define('list-info', ListInfo);

class ListInfoIcon extends cue.core.webcomponents.ListEditor {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 display: block;
 }
 .icon:before {
 font: 16px 'cf';
 font-style: normal;
 font-weight: normal;
 color: #444444;
 content: '\\e846';
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 }
 .icon.active:before {
 color: #09ab00;
 }
 </style>

 `;
 }

 connectedCallback() {
 this.activeStateChanged(this.active);
 this.addActiveWatcher(active => {
 this.activeStateChanged(active);
 });
 }

 activeStateChanged(active) {
 const icon = this.shadowRoot.querySelector('.icon');
 if (active) {

Copyright © 2015-2023 Stibo DX A/S Page 67

CUE Tech Guide

 $(icon).addClass('active');
 } else {
 $(icon).removeClass('active');
 }
 }
}
customElements.define('list-info-icon', ListInfoIcon);

4.1.2.3 HomePageMetadataPanel

cue.core.webcomponents.HomePageMetadataPanel can be used to add a custom metadata
panel section to the Search, Recent or Archive home page panel:

It is defined as follows:

export abstract class HomePageMetadataPanel extends CUEElement
 implements webcomponent.CollectionPanel<webcomponent.Content> {
 public name: string; // Name of the metadata panel
 public active: boolean; // Active state of the metadata panel

 // Function to be called whenever active state changes
 public abstract addActiveWatcher(fn: (active: boolean) => void): () => void;

 // Function to be called whenever selection in home page panel changes
 // Entries that are not accessible by the current user are passed as `null` in the
 array
 public abstract addFocusWatcher(
 fn: (entries: (webcomponent.Content | null)[]) => void
): () => void;

 // Returns currently selected contents
 public abstract getSelections(): Promise<webcomponent.Content[]>;

 // Following functions return info about current content item
 getArticleId: (content: webcomponent.Content) => Nullable<string>;
 getArticleUri: (content: webcomponent.Content) => Nullable<string>;
 getContentType: (content: webcomponent.Content) => Nullable<ContentType>;
 getState: (content: webcomponent.Content) => Nullable<ContentState>;
 getPublishedDate: (content: webcomponent.Content) => Nullable<Date>;
}

This PreviewPanel class makes the this.addFocusWatcher() method available to the web
component, so that it can provide a callback function that will be called whenever a new selection is
made in the panel.

4.1.2.3.1 HomePageMetadataPanel Configuration

The following properties must be defined to configure a home page metadata section based on
HomePageMetadataPanel:

- homePanels
An array of directive names of the home screen panel on which the metadata should be made
available. The following directive names may be specified:

cue-search-sidepanel CUE home screen Search panel

Copyright © 2015-2023 Stibo DX A/S Page 68

CUE Tech Guide

cue-latest-opened-
sidepanel

CUE home screen Recent panel

cue-dashboard-sidepanel CUE home screen Dashboard panel

cue-lists-sidepanel CUE home screen Lists panel

Remember also that the homePanels property name must be preceded by a hyphen (-).

directive
The tag name of the web component. The name you specify must contain a hyphen.

name
The display name of the component. The name is only actually displayed when the mouse is held
over the metadata section button.

webComponent
Information about the web component:

modulePath
The URL of the web component

icon
The tag name of the web component's icon. The name you specify must contain a
hyphen.

order
Determines the position of this section in the attributes panel (and the position of the button).
The sections are arranged in numerical order from lowest to highest.

All the properties must be entered as a list item belonging to a homeScreenMetadata property.
They must be indented correctly and the homePanels property must be preceded by a hyphen (-) to
indicate the start of a new list item. The following example shows the required format:

homeScreenMetadata:
 - homePanels: ["cue-search-sidepanel", "cue-latest-opened-sidepanel"]
 directive: "content-preview"
 name: "Preview"
 webComponent:
 modulePath: "http://www.example.com/webcomponents/preview/preview.js"
 icon: "content-preview-icon"
 order: 804

4.1.2.3.2 HomePageMetadataPanel Example

class PreviewPanel extends cue.core.webcomponents.HomePageMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 padding: 0;
 width: 100%
 }

Copyright © 2015-2023 Stibo DX A/S Page 69

CUE Tech Guide

 h1 {
 color: #9c9c9c;
 font-size: 24px;
 font-weight: 300;
 }
 img, video {
 max-width: 100%;
 }
 </style>

 <h1>Preview</h1>
 <div id="preview-wrapper"></div>
 `;

 this.blobUrl = undefined;
 }

 connectedCallback() {
 this.addFocusWatcher(contents => this.focusedResultChanged(contents[0]));
 }

 focusedResultChanged(content) {
 if (this.blobUrl) {
 window.URL.revokeObjectURL(this.blobUrl);
 }
 let hide = true;
 if (content && content.mimeType) {
 hide = !_.includes(['x-ece/picture', 'x-ece/video'], content.mimeType);
 }
 this.info.hidden = hide;
 if (!hide && !_.isEmpty(content.links['edit-media'])) {
 this.showPreview(
 content.links['edit-media'].uri.toString(),
 content.mimeType
);
 }
 }

 showPreview(binaryLink, mimeType) {
 let xhr = new XMLHttpRequest();
 xhr.open('GET', binaryLink, true);
 xhr.setRequestHeader('Authorization', this.credentials.escenic);
 xhr.responseType = 'blob';
 xhr.onload = () => {
 if (xhr.readyState === 4) {
 if (xhr.status === 200) {
 this.blobUrl = window.URL.createObjectURL(xhr.response);
 this.updatePreview(mimeType);
 } else {
 console.error(xhr.statusText);
 }
 }
 };

 xhr.onerror = () => {
 console.error(xhr.statusText);
 };

 xhr.send(null);
 }

Copyright © 2015-2023 Stibo DX A/S Page 70

CUE Tech Guide

 updatePreview(mimeType) {
 const wrapper = this.shadowRoot.querySelector('#preview-wrapper');
 if (mimeType === 'x-ece/video') {
 wrapper.innerHTML =
 '<video controls preload="metadata" src="' + this.blobUrl + '">';
 } else {
 wrapper.innerHTML =
 '';
 }
 }
}
customElements.define('content-preview', PreviewPanel);

/**
 * Creating the icon (if required)
 */
class PreviewIcon extends cue.core.webcomponents.HomePageMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 display: block;
 }
 .icon:before {
 font: 16px 'cf';
 font-style: normal;
 font-weight: normal;
 color: #444444;
 content: '\\e879';
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 }
 .icon.active:before {
 color: #09ab00;
 }
 </style>

 `;
 }

 connectedCallback() {
 this.activeStateChanged(this.active);
 this.addActiveWatcher(active => {
 this.activeStateChanged(active);
 });
 }

 activeStateChanged(active) {
 const icon = this.shadowRoot.querySelector('.icon');
 if (active) {
 $(icon).addClass('active');
 } else {
 $(icon).removeClass('active');
 }
 }

Copyright © 2015-2023 Stibo DX A/S Page 71

CUE Tech Guide

}
customElements.define('content-preview-icon', PreviewIcon);

4.1.2.4 AssignmentEditorMetadataPanel

cue.core.webcomponents.AssignmentEditorMetadataPanel can be used to add a custom
metadata panel section to CUE assignment editors.

It is defined as follows:

export abstract class AssignmentEditorMetadataPanel extends CUEElement
 implements webcomponent.AssignmentEditor {

 // Returns the assignment object opened in the editor
 public abstract getAssignment(): webcomponent.Nullable<
 webcomponent.Assignment
 >;
 // Returns the story folder to which the assignment opened in the editor belongs
 public abstract getStory(): webcomponent.Nullable<webcomponent.PrintStory>;
}

4.1.2.4.1 AssignmentEditorMetadataPanel Configuration

editors:
 metadata:
 - name: "Assignment Info"
 directive: "assignment-info"
 mimeTypes: ["x-cci/assignment; type=picture"]
 webComponent:
 modulePath: "webcomponents/{assignment-editor-metadata-panel-web-component}"
 icon: "assignment-info-icon"
 order: 735

4.1.2.4.2 AssignmentEditorMetadataPanel Example

class AssignmentInfo extends cue.core.webcomponents
 .AssignmentEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 padding: 0;
 width: 100%
 }
 h1 {
 color: #9c9c9c;
 font-size: 24px;
 font-weight: 300;
 }
 .property {
 display: flex;
 flex-direction: row;
 flex-wrap: wrap;

Copyright © 2015-2023 Stibo DX A/S Page 72

CUE Tech Guide

 margin-bottom: 20px;
 }
 .property .row {
 display: flex;
 flex-direction: row;
 width: 100%;
 font-weight: 300;
 font-size: 14px;
 }
 .property .row .left {
 flex-grow: 1;
 width: 30%;
 color: #9c9c9c;
 }
 .property .row .right {
 flex-grow: 1;
 width: 70%;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 }
 </style>

 <h1>Assignment Info</h1>

 <div class="property">
 <div id="assignment-name" class="row">
 <div class="left">Name:</div>
 <div class="right" data-testid="wc-name"></div>
 </div>
 <div class="row" id="items">
 <div class="left">Items:</div>
 <div class="right" data-testid="wc-items" ></div>
 </div>
 </div>
 <div id="story-info-wrapper"></div>
 `;
 }

 connectedCallback() {
 this.showAssignmentInfo();
 }

 showAssignmentInfo() {
 const assignment = this.getAssignment();
 const printStory = this.getStory();

 const storyWrapper = this.shadowRoot.querySelector('#story-info-wrapper');
 this.shadowRoot.querySelector('#assignment-name .right').innerHTML =
 assignment.name;
 this.shadowRoot.querySelector('#items .right').innerHTML =
 assignment.items.filter(item => !item.empty).length;
 storyWrapper.innerHTML = printStory
 ? `Story Name: ${printStory.name}.`
 : '';
 }
}
customElements.define('assignment-info', AssignmentInfo);

class AssignmentInfoIcon extends cue.core.webcomponents

Copyright © 2015-2023 Stibo DX A/S Page 73

CUE Tech Guide

 .AssignmentEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 display: block;
 }
 .icon:before {
 font: 16px 'cf';
 font-style: normal;
 font-weight: normal;
 color: #444444;
 content: '\\e846';
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 }
 .icon.active:before {
 color: #09ab00;
 }
 </style>

 `;
 }

 connectedCallback() {
 this.activeStateChanged(this.active);
 this.addActiveWatcher(active => {
 this.activeStateChanged(active);
 });
 }

 activeStateChanged(active) {
 const icon = this.shadowRoot.querySelector('.icon');
 if (active) {
 $(icon).addClass('active');
 } else {
 $(icon).removeClass('active');
 }
 }
}
customElements.define('assignment-info-icon', AssignmentInfoIcon);

4.1.2.5 SectionsMetadataPanel

cue.core.webcomponents.SectionsMetadataPanel can be used to add a custom metadata
panel section to the Sections home page panel.

It is defined as follows:

export abstract class SectionsMetadataPanel extends CUEElement
 implements webcomponent.SectionsPanel {
 public active: boolean; // Active state of the metadata panel

 // Function to be called whenever selection in Sections home page panel changes
 public abstract addFocusWatcher(

Copyright © 2015-2023 Stibo DX A/S Page 74

CUE Tech Guide

 fn: (section: webcomponent.Section) => void
): () => void;

 // Returns the sections that are currently selected in the section tree
 public abstract getSelections(): webcomponent.Section[];

 // Function to be called whenever active state changes
 public abstract addActiveWatcher(fn: (active: boolean) => void): () => void;

 // Following functions return info about current section
 getSectionUri: () => Nullable<string>;
 getSectionId: () => Nullable<string>;
 getSectionName: () => Nullable<string>;
}

4.1.2.5.1 SectionsMetadataPanel Configuration

The following properties must be defined to configure a home page metadata section based on
SectionsMetadataPanel:

- homePanels
An array of directive names of the home screen panel on which the metadata should be made
available. The array may only contain one directive name in this case: cue-sections-
sidepanel, specifying the home screen Sections panel.

Remember also that the homePanels property name must be preceded by a hyphen (-).

directive
The tag name of the web component. The name you specify must contain a hyphen.

name
The display name of the component. The name is only actually displayed when the mouse is held
over the metadata section button.

webComponent
Information about the web component:

modulePath
The URL of the web component

icon
The tag name of the web component's icon. The name you specify must contain a
hyphen.

order
Determines the position of this section in the attributes panel (and the position of the button).
The sections are arranged in numerical order from lowest to highest.

All the properties must be entered as a list item belonging to a homeScreenMetadata property.
They must be indented correctly and the homePanels property must be preceded by a hyphen (-) to
indicate the start of a new list item. The following example shows the required format:

homeScreenMetadata:
 - homePanels: ["cue-sections-sidepanel"]
 directive: "section-info"
 cssClass: "section-info"
 title: "General info" #translate
 name: "General Info"
 webComponent:

Copyright © 2015-2023 Stibo DX A/S Page 75

CUE Tech Guide

 modulePath: "webcomponents/section-info/section-info.js"
 icon: "section-info-icon"
 order: 702

4.1.2.5.2 SectionsMetadataPanel Example

class SectionInfo extends cue.core.webcomponents.SectionsMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 padding: 0;
 width: 100%;
 }
 ::selection {
 background: rgba(9, 171, 0, 0.5);
 color: white;
 }
 h1 {
 display: inline-block;
 line-height: 48px;
 font-size: 14px;
 font-weight: 600;
 text-transform: uppercase;
 color: #797878;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 height: 38px;
 margin-bottom: 0;
 }
 .property {
 display: flex;
 flex-direction: row;
 flex-wrap: wrap;
 margin-bottom: 20px;
 }
 .property .row {
 display: flex;
 flex-direction: row;
 width: 100%;
 font-weight: 300;
 font-size: 14px;
 }
 .property .row .left {
 flex-grow: 1;
 width: 20%;
 color: #9c9c9c;
 }
 .property .row .right {
 flex-grow: 1;
 width: 80%;
 white-space: nowrap;
 overflow: hidden;

Copyright © 2015-2023 Stibo DX A/S Page 76

CUE Tech Guide

 text-overflow: ellipsis;
 }
 .selectable {
 user-select: auto;
 }
 a {
 color: #457dce;
 text-decoration: none;
 }
 </style>

 <h1>General info</h1>
 <div class="property">
 <div id="id" class="row" title="ID">
 <div class="left">ID:</div>
 <div class="right selectable"></div>
 </div>
 <div id="name" class="row" title="Name">
 <div class="left">Name:</div>
 <div class="right" data-testid="wc-section-name"></div>
 </div>
 <div id="uri" class="row" title="URI">
 <div class="left">URI:</div>
 <div class="right"></div>
 </div>
 </div>
 <div class="property">
 <div id="created" class="row" title="Created">
 <div class="left">Created:</div>
 <div class="right"></div>
 </div>
 <div id="modified" class="row" title="Modified">
 <div class="left">Modified:</div>
 <div class="right"></div>
 </div>
 <div id="published" class="row" title="Published">
 <div class="left">Published:</div>
 <div class="right"></div>
 </div>
 </div>
 <div class="property">
 <div id="selection-count" class="row" title="Selection Count">
 <div class="left">Selection Count:</div>
 <div class="right"></div>
 </div>
 </div>
 `;
 }

 connectedCallback() {
 this.addFocusWatcher(section => {
 this.focusedSectionChanged(section);
 });
 }

 focusedSectionChanged(section) {
 const addCredentials = xhr => {
 xhr.setRequestHeader('Authorization', this.credentials.escenic);
 };

Copyright © 2015-2023 Stibo DX A/S Page 77

CUE Tech Guide

 $.ajax({
 url: section.uri.toString(),
 type: 'GET',
 beforeSend: addCredentials,
 })
 .done(document => {
 this.updateView(document);
 })
 .fail(error => {
 console.error(error);
 });
 }

 updateView(document) {
 const resolver = function (namespace) {
 switch (namespace) {
 case 'atom':
 return 'http://www.w3.org/2005/Atom';
 case 'app':
 return 'http://www.w3.org/2007/app';
 case 'dcterms':
 return 'http://purl.org/dc/terms/';
 }
 };

 const formatDate = date => {
 return moment(date, moment.ISO_8601, true).format('lll');
 };

 let dctermsCreated = document
 .evaluate('./atom:entry/dcterms:created', document, resolver)
 .iterateNext();
 const created = dctermsCreated ? dctermsCreated.firstChild.nodeValue : null;
 const modified = document
 .evaluate('./atom:entry/app:edited', document, resolver)
 .iterateNext().firstChild.nodeValue;
 const publishedNode = document
 .evaluate('./atom:entry/atom:published', document, resolver)
 .iterateNext();
 const published = publishedNode
 ? formatDate(publishedNode.firstChild.nodeValue)
 : '';

 this.shadowRoot.querySelector('#id .right').innerHTML = this.getSectionId();
 this.shadowRoot.querySelector('#name .right').innerHTML =
 this.getSectionName();
 this.shadowRoot.querySelector('#uri .right').innerHTML =
 "<a target='_blank' href='" +
 this.getSectionUri() +
 "'>" +
 this.getSectionUri() +
 '';
 if (created) {
 this.shadowRoot.querySelector('#created .right').innerHTML =
 formatDate(created);
 }
 this.shadowRoot.querySelector('#modified .right').innerHTML =
 formatDate(modified);
 this.shadowRoot.querySelector('#published .right').innerHTML = published;

Copyright © 2015-2023 Stibo DX A/S Page 78

CUE Tech Guide

 const selections = this.getSelections();
 this.shadowRoot.querySelector('#selection-count .right').innerHTML =
 selections?.length;
 }
}
customElements.define('section-info', SectionInfo);

class SectionInfoIcon extends cue.core.webcomponents.SectionsMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 display: block;
 }
 .icon:before {
 font: 16px 'cf';
 font-style: normal;
 font-weight: normal;
 color: #444444;
 content: '\\e8ad';
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: greyscale;
 }
 .icon.active:before {
 color: #09ab00;
 }
 </style>

 `;
 }

 connectedCallback() {
 this.activeStateChanged(this.active);
 this.addActiveWatcher(active => {
 this.activeStateChanged(active);
 });
 }

 activeStateChanged(active) {
 const icon = this.shadowRoot.querySelector('.icon');
 if (active) {
 $(icon).addClass('active');
 } else {
 $(icon).removeClass('active');
 }
 }
}
customElements.define('section-info-icon', SectionInfoIcon);

4.1.2.6 SectionPageMetadataPanel

cue.core.webcomponents.SectionPageMetadataPanel can be used to add a custom metadata
panel section to the CUE section page editor.

It is defined as follows:

Copyright © 2015-2023 Stibo DX A/S Page 79

CUE Tech Guide

export abstract class SectionPageMetadataPanel extends CUEElement
 implements webcomponent.SectionPageEditor {
 public name?: string; // Name of the metadata panel
 public active: boolean; // Active state of the metadata panel
 public mimeType: string; // MIME type of content being edited (always x-ece/section-
page in this case)

 // Function to be called whenever selection in section page editor changes
 // Entries that are not accessible by the current user are passed as `null` in the
 array
 public abstract addFocusWatcher(
 fn: (entries: (webcomponent.Content | null)[]) => void
): () => void;

 // Function to be called whenever something is changed in the section page's owning
 section
 addSectionWatcher(
 watcher: () => void
): () => void;

 // Returns content items currently selected in the section page editor
 public abstract getSelections(): Promise<webcomponent.Content[]>;

 // Sets the value of the specified teaser field in the currently selected content
 item on the section page
 public abstract setFieldValue(fieldName: string, value: any): void;

 // Returns the section page's owning section
 getSection: () => Section;

 // Returns the section page
 getSectionPage: () => Promise<SectionPage>;
}

4.1.2.6.1 SectionPageMetadataPanel Configuration

editors:
 metadata:
 - name: "Preview"
 directive: "section-page-content-preview"
 mimeTypes: ["x-ece/section-page"]
 webComponent:
 modulePath: "webcomponents/preview/preview.js"
 icon: "section-page-content-preview-icon"
 order: 730

4.1.2.6.2 SectionPageMetadataPanel Example

class SectionPageInfo extends cue.core.webcomponents.SectionPageMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 padding: 0;

Copyright © 2015-2023 Stibo DX A/S Page 80

CUE Tech Guide

 width: 100%;
 }
 ::selection {
 background: rgba(9, 171, 0, 0.5);
 color: white;
 }
 h1 {
 display: inline-block;
 line-height: 48px;
 font-size: 14px;
 font-weight: 600;
 text-transform: uppercase;
 color: #797878;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 height: 38px;
 margin-bottom: 0;
 }
 .property {
 display: flex;
 flex-direction: row;
 flex-wrap: wrap;
 margin-bottom: 20px;
 }
 .property .row {
 display: flex;
 flex-direction: row;
 width: 100%;
 font-weight: 300;
 font-size: 14px;
 }
 .property .row .left {
 flex-grow: 1;
 width: 20%;
 color: #9c9c9c;
 }
 .property .row .right {
 flex-grow: 1;
 width: 80%;
 overflow-wrap: anywhere;
 overflow: hidden;
 text-overflow: ellipsis;
 }
 .selectable {
 user-select: auto;
 }
 a {
 color: #457dce;
 text-decoration: none;
 }
 </style>

 <h1>Section</h1>
 <div class="property">
 <div id="section-id" class="row">
 <div class="left">ID:</div>
 <div class="right selectable"></div>
 </div>
 <div id="section-name" class="row">

Copyright © 2015-2023 Stibo DX A/S Page 81

CUE Tech Guide

 <div class="left">Name:</div>
 <div class="right" data-testid="wc-section-name"></div>
 </div>
 <div id="section-uri" class="row">
 <div class="left">URI:</div>
 <div class="right"></div>
 </div>
 <div id="section-live-uri" class="row">
 <div class="left">Live URI:</div>
 <div class="right"></div>
 </div>
 </div>
 <h1>Publication</h1>
 <div class="property">
 <div id="publication-name" class="row">
 <div class="left">Name:</div>
 <div class="right" data-testid="wc-publication-name"></div>
 </div>
 <div id="publication-uri" class="row">
 <div class="left">URI:</div>
 <div class="right"></div>
 </div>
 </div>
 <h1>Section Page</h1>
 <div class="property">
 <div id="section-page-id" class="row">
 <div class="left">ID:</div>
 <div class="right"></div>
 </div>
 <div id="section-page-name" class="row">
 <div class="left">Name:</div>
 <div class="right"></div>
 </div>
 <div id="section-page-xml" class="row">
 <div class="left">XML:</div>
 <div class="right"></div>
 </div>
 </div>
 <h1>State</h1>
 <div class="property">
 <div id="state-name" class="row">
 <div class="left">Name:</div>
 <div class="right"></div>
 </div>
 <div id="state-label" class="row">
 <div class="left">Label:</div>
 <div class="right" data-testid="wc-state-name"></div>
 </div>
 <div id="state-uri" class="row">
 <div class="left">URI:</div>
 <div class="right"></div>
 </div>
 </div>
 <h1>Root Group</h1>
 <div class="property">
 <div id="group-name" class="row">
 <div class="left">Name:</div>
 <div class="right"></div>
 </div>
 <div id="group-label" class="row">

Copyright © 2015-2023 Stibo DX A/S Page 82

CUE Tech Guide

 <div class="left">Label:</div>
 <div class="right"></div>
 </div>
 </div>
 <h1>Selection</h1>
 <div class="property">
 <div id="selection-count" class="row">
 <div class="left">Count:</div>
 <div class="right" data-testid="wc-selection-count"></div>
 </div>
 <div id="selection-type" class="row">
 <div class="left">Type:</div>
 <div class="right"></div>
 </div>
 <div id="selection-name" class="row">
 <div class="left">Name:</div>
 <div class="right"></div>
 </div>
 <div id="selection-label" class="row">
 <div class="left">Label:</div>
 <div class="right"></div>
 </div>
 <div id="selection-uri" class="row">
 <div class="left">URI:</div>
 <div class="right"></div>
 </div>
 </div>
 `;
 }

 async connectedCallback() {
 this.showSection();
 this.addSectionWatcher(() => this.showSection());
 await this.showSectionPage();
 const selections = await this.getSelections();
 await this.setSelections(selections);
 if (selections && selections.length > 0) {
 await this.focusedResultChanged(selections[0]);
 }
 this.addFocusWatcher(contents => this.focusedResultChanged(contents[0]));
 }

 showSection() {
 const section = this.getSection();
 this.setText('section-id', section.id);
 this.setText('section-name', section.label);
 this.setText('section-uri', section.uri?.toString());
 this.setText('section-live-uri', section.liveUri?.toString());

 this.setText('publication-name', section.publication?.name);
 this.setText('publication-uri', section.publication?.uri?.toString());
 }

 async showSectionPage() {
 const sectionPage = await this.getSectionPage();
 this.setText('section-page-id', sectionPage.id);
 this.setText('section-page-name', sectionPage.title);

 const xml = await this.getSectionPageEntryXML();
 const xmlNode = this.shadowRoot.querySelector('#section-page-xml .right');

Copyright © 2015-2023 Stibo DX A/S Page 83

CUE Tech Guide

 xmlNode.title = xml;
 $(xmlNode).on('click', async () => {
 await navigator.clipboard.writeText(xml);
 });
 xmlNode.innerHTML = 'Click to Copy';

 this.setText('state-name', sectionPage.state?.name);
 this.setText('state-label', sectionPage.state?.label);
 this.setText('state-uri', sectionPage.state?.uri?.toString());

 this.setText('group-name', sectionPage.rootGroup?.name);
 this.setText('group-label', sectionPage.rootGroup?.label);
 }

 async focusedResultChanged(content) {
 const selections = await this.getSelections();
 await this.setSelections(selections);
 if (!content) {
 this.setText('selection-type', '');
 this.setText('selection-name', '');
 this.setText('selection-label', '');
 this.setText('selection-uri', '');
 } else if (content.hasOwnProperty('items')) {
 this.setText('selection-type', 'Area');
 this.setText('selection-name', content.name);
 this.setText('selection-label', content.label);
 this.setText('selection-uri', '');
 } else if (content.hasOwnProperty('areas')) {
 this.setText('selection-type', 'Group');
 this.setText('selection-name', content.name);
 this.setText('selection-label', content.label);
 this.setText('selection-uri', '');
 } else if (content.hasOwnProperty('listLink')) {
 this.setText('selection-type', 'List Item');
 this.setText('selection-name', content.listLink?.name);
 this.setText('selection-label', '');
 this.setText('selection-uri ', content.listLink?.uri?.toString());
 } else {
 this.setText('selection-type', 'Content');
 this.setText('selection-name', content.values?.headline);
 this.setText('selection-label', '');
 this.setText('selection-uri', content.links?.self?.uri?.toString());
 }
 }

 setSelections(selections) {
 this.setText('selection-count', selections.length);
 }

 setText(id, text) {
 this.shadowRoot.querySelector(`#${id} .right`).innerHTML = text;
 }
}
customElements.define('section-page-info', SectionPageInfo);

/**
 * Creating the icon (if required)
 */
class SectionPageInfoIcon extends cue.core.webcomponents.HomePageMetadataPanel {
 constructor() {

Copyright © 2015-2023 Stibo DX A/S Page 84

CUE Tech Guide

 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 display: block;
 }
 .icon:before {
 font: 16px 'cf';
 font-style: normal;
 font-weight: normal;
 color: #444444;
 content: '\\e8ad';
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 }
 .icon.active:before {
 color: #09ab00;
 }
 </style>

 `;
 }

 connectedCallback() {
 this.activeStateChanged(this.active);
 this.addActiveWatcher(active => {
 this.activeStateChanged(active);
 });
 }

 activeStateChanged(active) {
 const icon = this.shadowRoot.querySelector('.icon');
 if (active) {
 $(icon).addClass('active');
 } else {
 $(icon).removeClass('active');
 }
 }
}
customElements.define('section-page-info-icon', SectionPageInfoIcon);

4.1.2.7 TextEditorMetadataPanel

cue.core.webcomponents.TextEditorMetadataPanel can be used to add a custom metadata
panel section to CUE content editors (rich text). Note that TextEditorMetadataPanel inherits
from StorylineEditorMetadataPanel, allowing you to use it to create web components that
will work for both storylines and classic content items. The isStoryline() method can be used
to determine what kind of content item is currently loaded, allowing you modify the component's
behavior as required.

It is defined as follows:

export abstract class TextEditorMetadataPanel extends StorylineEditorMetadataPanel
 implements webcomponent.TextEditor, webcomponent.Panel {
 public name: string; // Name of the metadata panel section

Copyright © 2015-2023 Stibo DX A/S Page 85

CUE Tech Guide

 public mimeType: string; // MIME type of content being edited
 public active: boolean; // Active state of the metadata panel section
 public selection: webcomponent.EditorSelection; // Current text selection in editor

 // Returns true if the content item in the editor is a storyline
 // in which case you can use the functions inherited from
 StorylineEditorMetadataPanel
 public abstract isStoryline(): boolean;

 // Sends the specified trigger to the specified enrichment service
 public abstract triggerService(
 triggerName: string,
 serviceName: string
): void;

 // Sets the value of the specified field in the content editor.
 // Will throw error if CUE fails to set the value
 public abstract setFieldValue(fieldName: string, value: any): void;

 // Function to be called whenever some content is changed in the editor
 public abstract addContentWatcher(
 watcher: (content: webcomponent.Content) => void
): () => void;

 // Gets the content being edited
 public abstract getContent(): Promise<webcomponent.Content>;

 // Returns the xml representation of the content being edited
 public abstract getContentXML(): Promise<string | undefined>;

 // Returns current container object
 getContainer: () => webcomponent.Container;

 // Returns an up-to-date preview URL for the current content item
 public abstract getPreviewURL(): Promise<string | undefined>;

 // Sets current container slug
 setContainerSlug: (slug: string) => void;

 // Returns whether container slug is editable
 isContainerSlugEditable: () => boolean;

 // Returns references to all the content items in which this
 // content item appears as a relation or inline relation
 getContentUsages: () => Promise<webcomponent.Content[]>;

 // Returns the Content Store id of the content item being edited
 getArticleId(): Nullable<string>;

 // Returns the preview URI of the content item being edited
 getArticleUri(): Nullable<string>;

 // Returns the content type of the content item being edited
 getContentType(): Nullable<ContentType>;

 // Returns the state of the content item being edited
 getState(): Nullable<webcomponent.ContentState>;

 // Returns the published date of the content item being edited
 getPublishedDate(): Nullable<Date>;

Copyright © 2015-2023 Stibo DX A/S Page 86

CUE Tech Guide

 // Returns the tags assigned to the content item being edited
 getTags(): Tag[];
}

The TextEditorMetadataPanel class provides read/write access to the current text selection in the
editor via its selection property:

interface EditorSelection {
 getCurrentSelection: () => Selection | undefined;
 replaceSelection: (newContent: string, selection: Selection) => void;
 forEachBlockInSelection: (
 range: Range,
 forEachBlock: (element: Element) => void
) => void;
 replaceElement: (
 element: Element,
 elementName: string,
 className: string,
 text?: string
) => void;
 replaceBlockElement: (
 element: Element,
 elementName: string,
 className: string
) => void;
 addSelectionWatcher: (
 watcher: (selection: Selection | undefined) => void
) => void;
}

4.1.2.7.1 TextEditorMetadataPanel Configuration

The following properties must be defined to configure an editor metadata section based on
TextEditorMetadataPanel:

- name
The name of the web component, preceded by a hyphen (-). By convention it is usually the same
as the web component's tagName, but does not have to be.

tagName
The tag name of the web component. The name you specify here must contain a hyphen
and must be the name specified with customElements.define() in the web component
definition.

modulePath
The URL of the web component

attributes
Information about the web component:

title
The display name of the component. The name is only actually displayed when the mouse
is held over the metadata section button.

icon
The tag name of the web component's icon. The name you specify must contain a
hyphen.

Copyright © 2015-2023 Stibo DX A/S Page 87

CUE Tech Guide

All the properties must be entered as a list item belonging to a customComponents property. They
must be indented correctly and the name property must be preceded by a hyphen (-) to indicate the
start of a new list item. The following example shows the required format:

customComponents
 - name: "content-history"
 tagName: "content-history"
 modulePath: "webcomponents/history/history.js"
 attributes:
 title: "Content History"
 icon: "content-history-icon"

In order for a metadata section defined in this way to actually appear in CUE, you also need to add a
configuration to one or more content-type resources in the Content Store. For further information
about this, see section 2.2.7.

4.1.2.7.2 TextEditorMetadataPanel Example

class TextModification extends cue.core.webcomponents.TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host { width: 100%; display: block; } /* Styles the web component tag */
 h1 {
 color: #9c9c9c;
 font-size: 24px;
 font-weight: 300;
 }
 button {
 display: block;
 font-size: 16px;
 font-family: "Hind", Helvetica Neue, Helvetica, Arial, Sans-serif;
 line-height: 32px;
 height: 32px;
 text-align: center;
 border: none;
 border-radius: 3px;
 background-color: #d3d3d3;
 color: #444444;
 cursor: pointer;
 padding: 0 10px;
 margin-bottom: 10px;
 }
 button:disabled {
 background-color: #efefef;
 color: #999999;
 pointer-events: none;
 }
 button:hover {
 background-color: #efefef;
 }
 </style>

 <h1>Text Modification</h1>
 <button class="character-tag">Insert Character Tag</button>

Copyright © 2015-2023 Stibo DX A/S Page 88

CUE Tech Guide

 <button class="macro-tag">Insert Macro Tag</button>
 <button class="em-dash">Insert Em dash</button>
 <button class="queen">Insert #</button>
 `;
 }

 connectedCallback() {
 if (this.selection) {
 this.addButtonEventListeners();
 this.currentSelection = this.selection.getCurrentSelection();
 this.selection.addSelectionWatcher(newSelection => {
 this.currentSelection = newSelection;
 this.setButtonStates(!!newSelection);
 });
 }
 this.setButtonStates(!!this.currentSelection);
 }

 addButtonEventListeners() {
 this.addCharacterTagEventListener();
 this.addMacroTagEventListener();
 this.addEmDashEventListener();
 this.addQueenEventListener();
 }

 addCharacterTagEventListener() {
 const button = this.shadowRoot.querySelector('.character-tag');
 $(button).on('click', () => {
 if (this.currentSelection.rangeCount) {
 this.selection.forEachBlockInSelection(
 this.currentSelection.getRangeAt(0),
 element => {
 this.selection.replaceElement(element, 'span', 'quote_attrib');
 }
);
 }
 });
 }

 addMacroTagEventListener() {
 const button = this.shadowRoot.querySelector('.macro-tag');
 $(button).on('click', () => {
 this.selection.replaceSelection(
 '<extra_leading>',
 this.currentSelection
);
 });
 }

 addEmDashEventListener() {
 const button = this.shadowRoot.querySelector('.em-dash');
 $(button).on('click', () => {
 this.selection.replaceSelection('—', this.currentSelection);
 });
 }

 addQueenEventListener() {
 const button = this.shadowRoot.querySelector('.queen');
 $(button).on('click', () => {
 this.selection.replaceSelection('#', this.currentSelection);

Copyright © 2015-2023 Stibo DX A/S Page 89

CUE Tech Guide

 });
 }

 setButtonStates(enabled) {
 const buttonSelectors = [
 '.character-tag',
 '.macro-tag',
 '.em-dash',
 '.queen',
];

 _.forEach(buttonSelectors, selector => {
 const button = this.shadowRoot.querySelector(selector);
 $(button).prop('disabled', !enabled);
 });
 }
}
customElements.define('text-modification', TextModification);

class TextModificationIcon extends cue.core.webcomponents
 .TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host { margin: 0; padding: 2px; display: block; } /* Styles the web
 component icon tag */
 .icon:before {
 font: 16px 'cf';
 font-style: normal;
 font-weight: normal;
 color: #444444;
 content: '\\e8a6';
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 }
 .icon.active:before {
 color: #09ab00;
 }
 </style>

 `;
 }

 connectedCallback() {
 this.activeStateChanged(this.active);
 this.addActiveWatcher(active => {
 this.activeStateChanged(active);
 });
 }

 activeStateChanged(active) {
 const icon = this.shadowRoot.querySelector('.icon');
 if (active) {
 $(icon).addClass('active');
 } else {
 $(icon).removeClass('active');

Copyright © 2015-2023 Stibo DX A/S Page 90

CUE Tech Guide

 }
 }
}
customElements.define('text-modification-icon', TextModificationIcon);

4.1.2.7.3 TextEditorMetadataPanel / Enrichment Service Example

This example shows how a TextEditorMetadataPanel web component can be used to invoke an
enrichment service. The TextEditorMetadataPanel configuration looks like this:

editors:
 metadata:
 - name: "Enrichment service"
 directive: "enrichment-service"
 mimeTypes: ["x-ece/story"]
 webComponent:
 modulePath: "webcomponents/enrichment-service.js"
 icon: "enrichment-service-icon"
 order: 731

In this case, an enrichment service configuration is also required:

enrichmentServices:
 - name: "Text plain service"
 href: "http://localhost:8082/textPlainService"
 title: "Text plain service"
 triggers:
 - name: "on-click"
 properties: {}
 - name: "VDF payload service"
 href: "http://localhost:8082/vdfPayloadService/payload"
 title: "VDF payload service"
 triggers:
 - name: "on-click"
 properties: {}

The web component implementation looks like this:

class EnrichmentService extends cue.core.webcomponents.TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 padding: 0;
 width: 100%;
 }
 ::selection {
 background: rgba(9, 171, 0, 0.5);
 color: white;
 }
 h1 {
 color: #9c9c9c;
 font-size: 24px;
 font-weight: 300;
 }

Copyright © 2015-2023 Stibo DX A/S Page 91

CUE Tech Guide

 .property {
 display: flex;
 flex-direction: row;
 flex-wrap: wrap;
 margin-bottom: 20px;
 }
 .property .row {
 display: flex;
 flex-direction: row;
 width: 100%;
 font-weight: 300;
 font-size: 14px;
 }
 .property .row .left {
 flex-grow: 1;
 width: 30%;
 color: #9c9c9c;
 }
 .property .row .right {
 flex-grow: 1;
 width: 70%;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 }
 </style>

 <h1>Enrichment service</h1>
 <div class="property">
 <div>
 <button class="text-plain">Invoke Service (text/plain)</button>
 </div>
 <hr/>
 <div>
 <button class="vdf-payload">Invoke Service (vdf)</button>
 </div>
 </div>
 `;
 };

 connectedCallback() {
 const textPlain = this.shadowRoot.querySelector('.text-plain');
 $(textPlain).on('click', () => {
 this.triggerService('on-click', 'Text plain service');
 });
 const vdfPayload = this.shadowRoot.querySelector('.vdf-payload');
 $(vdfPayload).on('click', () => {
 this.triggerService('on-click', 'VDF payload service');
 });
 }
}

customElements.define('enrichment-service', EnrichmentService);

class EnrichmentServiceIcon extends cue.core.webcomponents.TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `

Copyright © 2015-2023 Stibo DX A/S Page 92

CUE Tech Guide

 <style>
 :host {
 margin: 0;
 display: block;
 }
 .icon:before {
 font: 16px 'cf';
 font-style: normal;
 font-weight: normal;
 color: #444444;
 content: '\\e0f3';
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: greyscale;
 }
 .icon.active:before {
 color: #09ab00;
 }
 </style>

 `;
 }

 connectedCallback() {
 this.activeStateChanged(this.active);
 this.addActiveWatcher((active) => {
 this.activeStateChanged(active);
 });
 }

 activeStateChanged(active) {
 let icon = this.shadowRoot.querySelector('.icon');
 if (active) {
 $(icon).addClass('active');
 }
 else {
 $(icon).removeClass('active');
 }
 }
}

customElements.define('enrichment-service-icon', EnrichmentServiceIcon);

For detailed information about enrichment services, see section 4.2.

4.1.2.7.4 TextEditorMetadataPanel / History Example

This example shows how to add a "history" metadata section using TextEditorMetadataPanel.
The configuration looks like this:

customComponents
 - name: "content-history"
 tagName: "content-history"
 modulePath: "webcomponents/history/history.js"
 attributes:
 title: "Content History"
 icon: "content-history-icon"

The web component implementation looks like this:

Copyright © 2015-2023 Stibo DX A/S Page 93

CUE Tech Guide

class HistoryElement extends cue.core.webcomponents.TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 padding: 0;
 width: 100%
 }
 h1 {
 color: #9c9c9c;
 font-size: 24px;
 font-weight: 300;
 }
 .entry {
 width: 100%;
 display: flex;
 flex-direction: row;
 }
 .state {
 width: 25%
 }
 .date {
 width: 42%;
 }
 .author {
 width: 33%;
 }
 </style>

 <h1>History</h1>
 <div class="entries"></div>
 `;
 }

 connectedCallback() {
 this.fetchHistory();
 this.addContentWatcher(() => {
 this.fetchHistory();
 });
 }

 fetchHistory() {
 this.getContent().then(content => {
 const historyLinks =
 content.links['http://www.vizrt.com/types/relation/log'];
 if (historyLinks && historyLinks.length > 0) {
 const historyLink = historyLinks[0];
 $.ajax({
 url: historyLink.uri.toString(),
 type: 'GET',
 accept: historyLink.mimeType.format(),
 beforeSend: xhr => {
 xhr.setRequestHeader('Authorization', this.credentials.escenic);
 },
 success: result => {

Copyright © 2015-2023 Stibo DX A/S Page 94

CUE Tech Guide

 this.displayHistory(result);
 },
 error: (request, error) => {
 console.error(error);
 },
 });
 }
 });
 }

 displayHistory(document) {
 const entriesDiv = this.shadowRoot.querySelector('.entries');
 const parsedEntries = this.parseDocument(document);
 entriesDiv.innerHTML = '';
 parsedEntries.forEach(entry => {
 entriesDiv.innerHTML +=
 '<div class="entry">' +
 '' +
 entry.state +
 '' +
 '' +
 entry.updated.format('lll') +
 '' +
 '' +
 entry.author +
 '' +
 '</div>';
 });
 }

 parseDocument(document) {
 const resolver = function (namespace) {
 switch (namespace) {
 case 'app':
 return 'http://www.w3.org/2007/app';
 case 'atom':
 return 'http://www.w3.org/2005/Atom';
 case 'vaext':
 return 'http://www.vizrt.com/atom-ext';
 }
 };

 const entries = document.evaluate('//atom:entry', document, resolver);
 let entry = entries.iterateNext();
 let parsedEntries = [];
 while (entry) {
 const updated = document
 .evaluate('./atom:updated', entry, resolver)
 .iterateNext().firstChild.nodeValue;
 const state = document
 .evaluate('./app:control/vaext:state', entry, resolver)
 .iterateNext()
 .attributes.getNamedItem('name').value;
 const authorNode = document
 .evaluate('./atom:author/atom:name', entry, resolver)
 .iterateNext().firstChild;
 const author = authorNode ? authorNode.nodeValue : '';
 parsedEntries.push({
 updated: moment(updated, moment.ISO_8601, true),
 state: state,

Copyright © 2015-2023 Stibo DX A/S Page 95

CUE Tech Guide

 author: author,
 });
 entry = entries.iterateNext();
 }
 return parsedEntries;
 }
}
customElements.define('content-history', HistoryElement);

/**
 * Creating the icon (if required)
 */
class HistoryIcon extends cue.core.webcomponents.TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 display: block;
 }
 .icon:before {
 font: 16px 'cf';
 font-style: normal;
 font-weight: normal;
 color: #444444;
 content: '\\e8b9';
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 }
 .icon.active:before {
 color: #09ab00;
 }
 </style>

 `;
 }

 connectedCallback() {
 this.activeStateChanged(this.active);
 this.addActiveWatcher(active => {
 this.activeStateChanged(active);
 });
 }

 activeStateChanged(active) {
 const icon = this.shadowRoot.querySelector('.icon');
 if (active) {
 $(icon).addClass('active');
 } else {
 $(icon).removeClass('active');
 }
 }
}
customElements.define('content-history-icon', HistoryIcon);

Copyright © 2015-2023 Stibo DX A/S Page 96

CUE Tech Guide

4.1.2.7.5 TextEditorMetadataPanel / Content XML Example

This example shows how to add a "Content XML" metadata section using
TextEditorMetadataPanel. The configuration looks like this:

customComponents
- name: "content-xml"
 tagName: "content-xml"
 modulePath: "webcomponents/content-xml/content-xml.js"
 attributes:
 title: "Content XML"
 icon: "content-xml-icon"

The web component implementation looks like this:

const script = document.createElement('script');
script.src =
 '//cdn.jsdelivr.net/gh/highlightjs/cdn-release@9.18.0/build/highlight.min.js';
document.head.appendChild(script);

class ContentXml extends cue.core.webcomponents.TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 @import url('https://cdn.jsdelivr.net/gh/highlightjs/cdn-release@9.18.0/build/
styles/default.min.css');
 :host {
 margin: 0;
 padding: 0;
 width: 100%;
 }
 ::selection {
 background: rgba(9, 171, 0, 0.5);
 color: white;
 }
 h1 {
 color: #9c9c9c;
 font-size: 24px;
 font-weight: 300;
 }
 </style>

 <h1>Content XML</h1>
 <pre><code class="xml"></code></pre>
 <button class="content-xml">Content XML</button>
 `;
 }

 async connectedCallback() {
 this.addButtonEventListener();
 }

 addButtonEventListener() {
 $(this.shadowRoot.querySelector('.content-xml')).on('click', () =>
 this.prettyXML()
);

Copyright © 2015-2023 Stibo DX A/S Page 97

CUE Tech Guide

 }

 async prettyXML() {
 const xmlElement = this.shadowRoot.querySelector('.xml');
 const sourceXML = await this.getContentXML();
 const html = this.htmlEscape(this.prettifyXml(sourceXML));
 $(xmlElement).html(html);
 hljs.highlightBlock(xmlElement);
 }

 prettifyXml(sourceXml) {
 const xmlDoc = new DOMParser().parseFromString(
 sourceXml,
 'application/xml'
);
 const xsltDoc = new DOMParser().parseFromString(
 [
 '<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">',
 ' <xsl:strip-space elements="*"/>',
 ' <xsl:template match="para[content-style][not(text())]">',
 ' <xsl:value-of select="normalize-space(.)"/>',
 ' </xsl:template>',
 ' <xsl:template match="node()|@*">',
 ' <xsl:copy><xsl:apply-templates select="node()|@*"/></xsl:copy>',
 ' </xsl:template>',
 ' <xsl:output indent="yes"/>',
 '</xsl:stylesheet>',
].join('\n'),
 'application/xml'
);

 const xsltProcessor = new XSLTProcessor();
 xsltProcessor.importStylesheet(xsltDoc);
 const resultDoc = xsltProcessor.transformToDocument(xmlDoc);
 return new XMLSerializer().serializeToString(resultDoc);
 }

 htmlEscape(s) {
 return s.replace(/&/g, '&').replace(/</g, '<').replace(/>/g, '>');
 }
}

customElements.define('content-xml', ContentXml);

class ContentXmlIcon extends cue.core.webcomponents.TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 display: block;
 }
 .icon:before {
 font: 16px 'cf';
 font-style: normal;
 font-weight: normal;
 color: #444444;

Copyright © 2015-2023 Stibo DX A/S Page 98

CUE Tech Guide

 content: '<x>';
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: greyscale;
 }
 .icon.active:before {
 color: #09ab00;
 }
 </style>

 `;
 }

 connectedCallback() {
 this.activeStateChanged(this.active);
 this.addActiveWatcher(
 function (active) {
 this.activeStateChanged(active);
 }.bind(this)
);
 }

 activeStateChanged(active) {
 var icon = this.shadowRoot.querySelector('.icon');
 if (active) {
 $(icon).addClass('active');
 } else {
 $(icon).removeClass('active');
 }
 }
}

customElements.define('content-xml-icon', ContentXmlIcon);

4.1.2.7.6 TextEditorMetadataPanel / Container slug Example

This example shows how to add a "Container Slug" metadata section using
TextEditorMetadataPanel to modify a container slug. The configuration looks like this:

customComponents
- name: "slug-modification"
 tagName: "slug-modification"
 modulePath: "webcomponents/slug-modification/slug-modification.js"
 attributes:
 title: "Slug Modification"
 icon: "slug-modification-icon"

The web component implementation looks like this:

class SlugModification extends cue.core.webcomponents.TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host { width: 100%; display: block; }
 h1 {
 color: #9c9c9c;

Copyright © 2015-2023 Stibo DX A/S Page 99

CUE Tech Guide

 font-size: 24px;
 font-weight: 300;
 }
 .slug-text {
 padding: 10px 5px;
 }
 .slug-text:hover {
 border: 1px solid grey;
 }
 .slug-input {
 width: 100%;
 }
 </style>

 <h1>Slug Modification</h1>
 <div class="slug-text" title="Click to Edit"></div>
 <input type="text" class="slug-input" hidden>
 `;
 }

 connectedCallback() {
 this.loadSlug();
 this.addSlugEventListener();
 this.addContentWatcher(() => {
 this.loadSlug();
 });
 }

 loadSlug() {
 const container = this.getContainer();
 if (container.slug) {
 const slugText = this.shadowRoot.querySelector('.slug-text');
 $(slugText).html(container.slug);
 }
 }

 addSlugEventListener() {
 const slugInput = this.shadowRoot.querySelector('.slug-input');
 const slugText = this.shadowRoot.querySelector('.slug-text');

 $(slugText).on('click', () => {
 if (this.isContainerSlugEditable()) {
 $(slugInput).css('display', 'block');
 const container = this.getContainer();
 $(slugInput).val(container.slug);
 $(slugText).css('display', 'none');
 }
 });

 $(slugInput).on('keyup', e => {
 if (e.keyCode === 13) {
 this.setContainerSlug($(slugInput).val());
 $(slugInput).css('display', 'none');
 $(slugText).html($(slugInput).val());
 $(slugText).css('display', 'block');
 }
 });
 }
}
customElements.define('slug-modification', SlugModification);

Copyright © 2015-2023 Stibo DX A/S Page 100

CUE Tech Guide

class SlugModificationIcon extends cue.core.webcomponents
 .TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host { margin: 0; padding: 2px; display: block; } /* Styles the web
 component icon tag */
 .icon:before {
 font: 16px 'cf';
 font-style: normal;
 font-weight: normal;
 color: #444444;
 content: 'Sl';
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 }
 .icon.active:before {
 color: #09ab00;
 }
 </style>

 `;
 }

 connectedCallback() {
 this.activeStateChanged(this.active);
 this.addActiveWatcher(active => {
 this.activeStateChanged(active);
 });
 }

 activeStateChanged(active) {
 const icon = this.shadowRoot.querySelector('.icon');
 if (active) {
 $(icon).addClass('active');
 } else {
 $(icon).removeClass('active');
 }
 }
}
customElements.define('slug-modification-icon', SlugModificationIcon);

4.1.2.7.7 TextEditorMetadataPanel / Field editor Example

This example shows how to add a "Field editor" metadata section using TextEditorMetadataPanel
to modify a field. The configuration looks like this:

customComponents
- name: "field-editor"
 tagName: "field-editor"
 modulePath: "webcomponents/field-editor/field-editor.js"
 attributes:
 title: "Field editor"
 icon: "field-editor-icon"

Copyright © 2015-2023 Stibo DX A/S Page 101

CUE Tech Guide

The web component implementation looks like this:

class FieldEditor extends cue.core.webcomponents.TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host { width: 100%; display: block; }
 h1 {
 color: #9c9c9c;
 font-size: 24px;
 font-weight: 300;
 }
 .slug-text {
 padding: 10px 5px;
 }
 .slug-text:hover {
 border: 1px solid grey;
 }
 .slug-input {
 width: 100%;
 }
 </style>

 <h1>Field Editor</h1>
 <input type="text" class="title-field" placeholder="Title" data-testid="wc-
title">
 `;
 }

 async connectedCallback() {
 this.addContentWatcher(content => {
 this.setViewValue(content.values['title']);
 });
 const content = await this.getContent();
 this.setViewValue(content.values['title']);

 this.addFieldChangeListener();
 }

 addFieldChangeListener() {
 const field = this.shadowRoot.querySelector('.title-field');
 $(field).on('change', () => {
 this.setValue('title', $(field).val());
 });
 }

 setViewValue(value) {
 const field = this.shadowRoot.querySelector('.title-field');
 $(field).val(value);
 }

 setValue(key, value) {
 try {
 this.setFieldValue(key, value);
 } catch (e) {
 console.error(`Failed to set ${key} value!`, e);

Copyright © 2015-2023 Stibo DX A/S Page 102

CUE Tech Guide

 }
 }
}
customElements.define('field-editor', FieldEditor);

class FieldEditorIcon extends cue.core.webcomponents.TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host { margin: 0; padding: 2px; display: block; } /* Styles the web
 component icon tag */
 .icon:before {
 font: 16px 'cf';
 font-style: normal;
 font-weight: normal;
 color: #444444;
 content: 'E';
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 }
 .icon.active:before {
 color: #09ab00;
 }
 </style>

 `;
 }

 connectedCallback() {
 this.activeStateChanged(this.active);
 this.addActiveWatcher(active => {
 this.activeStateChanged(active);
 });
 }

 activeStateChanged(active) {
 const icon = this.shadowRoot.querySelector('.icon');
 if (active) {
 $(icon).addClass('active');
 } else {
 $(icon).removeClass('active');
 }
 }
}
customElements.define('field-editor-icon', FieldEditorIcon);

4.1.2.7.8 TextEditorMetadataPanel / Usages Example

This example shows how to add a "Usages" metadata section using TextEditorMetadataPanel
to return references to all the content items in which this content item appears as a relation or inline
relation. The configuration looks like this:

customComponents
- name: "usages"
 tagName: "content-usages"

Copyright © 2015-2023 Stibo DX A/S Page 103

CUE Tech Guide

 modulePath: "webcomponents/usages.js"
 attributes:
 title: "Usages" #translate
 icon: "usages-icon"

The web component implementation looks like this:

class Usages extends cue.core.webcomponents.TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host { width: 100%; display: block; }
 h1 {
 color: #9c9c9c;
 font-size: 24px;
 font-weight: 300;
 }
 .slug-text {
 padding: 10px 5px;
 }
 .slug-text:hover {
 border: 1px solid grey;
 }
 .slug-input {
 width: 100%;
 }
 </style>

 <h1>Content Usages</h1>
 <ul class="usages">
 `;
 }

 async connectedCallback() {
 const usages = await this.getContentUsages();
 usages.forEach(usage => {
 const ul = $(this.shadowRoot.querySelector('.usages'));
 ul.append(`<a href="${usage.links['alternate'] ?
 usage.links['alternate'].uri.toString() : usage.links['self'].uri.toString()}">
${usage.values['title']}`)
 });
 }
}
customElements.define('content-usages', Usages);

class UsagesIcon extends cue.core.webcomponents.TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host { margin: 0; padding: 2px; display: block; } /* Styles the web component
 icon tag */
 .icon:before {
 font: 16px 'cf';

Copyright © 2015-2023 Stibo DX A/S Page 104

CUE Tech Guide

 font-style: normal;
 font-weight: normal;
 color: #444444;
 content: 'U';
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 }
 .icon.active:before {
 color: #09ab00;
 }
 </style>

 `;
 }

 connectedCallback() {
 this.activeStateChanged(this.active);
 this.addActiveWatcher(active => {
 this.activeStateChanged(active);
 });
 }

 activeStateChanged(active) {
 const icon = this.shadowRoot.querySelector('.icon');
 if (active) {
 $(icon).addClass('active');
 }
 else {
 $(icon).removeClass('active');
 }
 }
 }
 customElements.define('content-usages-icon', UsagesIcon);

4.1.2.8 StorylineEditorMetadataPanel

cue.core.webcomponents.StorylineEditorMetadataPanel can be used to add a custom
metadata panel section to CUE content editors (storyline).

It is defined as follows:

export abstract class StorylineEditorMetadataPanel extends CUEElement {

 // Returns the storyline being edited
 public storyline: webcomponent.Storyline;

 // Function to be called whenever the storyline changes
 public abstract addStorylineWatcher(
 watcher: (storyline: webcomponent.Storyline) => void
): () => void;

 // Function to be called whenever a new story element gets the focus in the editor
 public abstract addStoryElementFocusWatcher(
 watcher: (storyelement: webcomponent.StoryElement) => void
): () => void;

 // Function to be called whenever the text selection changes in the editor
 public abstract addTextSelectionWatcher(

Copyright © 2015-2023 Stibo DX A/S Page 105

CUE Tech Guide

 watcher: (selection: webcomponent.StorylineTextSelection) => void
): () => void;

 // Gets the story element currently in focus
 getFocusedStoryElement(): webcomponent.StoryElement | undefined;

 // Sets the value of the specified field in the specified story element in the
 editor
 public abstract setStoryElementFieldValue(
 storyElementId: string,
 fieldName: string,
 fieldValue: any
): void;

 // Sets the value of the story element in the editor
 public abstract updateStoryElementValue(
 storyElementId: string,
 fieldValue: any
): void;
}

4.1.2.8.1 StorylineEditorMetadataPanel Configuration

editors:
 metadata:
 - name: "storyline-stat"
 directive: "storyline-stat"
 cssClass: "storyline-stat"
 title: "Storyline Stat" #translate
 webComponent:
 modulePath: "webcomponents/storyline/storyline-stat.js"
 icon: "storyline-stat-icon"
 mimeTypes: ["x-ece/story", "x-ece/new-content; type=story"]
 order: 731

4.1.2.8.2 StorylineEditorMetadataPanel Example

const titleShortcut = 'wct';
const dummyTitle = 'Cool Title from Storyline stat web component';
const bodyShortcut = 'wcbd';
const dummyBody =
 'Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
 incididunt ut ' +
 'labore et dolore magna aliqua. Magna etiam tempor orci eu. Sed libero enim ' +
 'sed faucibus turpis in eu mi. Urna porttitor rhoncus dolor purus non enim ' +
 'praesent elementum. Magna fermentum iaculis eu non diam phasellus vestibulum
 lorem.';

class StorylineStatPanel extends cue.core.webcomponents
 .TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;

Copyright © 2015-2023 Stibo DX A/S Page 106

CUE Tech Guide

 padding: 0;
 width: 100%;
 }
 ::selection {
 background: rgba(9, 171, 0, 0.5);
 color: white;
 }
 h1 {
 display: inline-block;
 line-height: 48px;
 font-size: 14px;
 font-weight: 600;
 text-transform: uppercase;
 color: #797878;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 height: 38px;
 margin-bottom: 0;
 }
 h2 {
 display: inline-block;
 font-size: 13px;
 font-weight: 600;
 color: #797878;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 margin-bottom: 0;
 }
 .property {
 display: flex;
 flex-direction: row;
 flex-wrap: wrap;
 margin-bottom: 20px;
 }
 .property .row, .elementId, .contentURI {
 display: flex;
 flex-direction: row;
 width: 100%;
 font-weight: 300;
 font-size: 14px;
 }
 .property .row .left {
 flex-grow: 1;
 width: 80%;
 color: #9c9c9c;
 }
 .property .row .right {
 flex-grow: 1;
 width: 20%;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 }
 .property .elementName .left {
 width: 40%;
 }
 .property .elementName .right {
 width: 60%;

Copyright © 2015-2023 Stibo DX A/S Page 107

CUE Tech Guide

 text-align: right;
 }
 .property .elementId .left {
 flex-grow: 1;
 width: 10%;
 color: #9c9c9c;
 }
 .property .elementId .right {
 flex-grow: 1;
 width: 90%;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 }
 .property .contentURI .left {
 flex-grow: 1;
 width: 10%;
 color: #9c9c9c;
 }
 .property .contentURI .right {
 flex-grow: 1;
 width: 90%;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 padding-left: 5px;
 }
 .property .row.total {
 background: #efefef;
 font-weight: bold;
 }
 .message {
 display: none;
 }
 </style>

 <h1 data-testid="wc-headline">Storyline Stats</h1>

 <div class="property">
 <div id="uri" class="contentURI">
 <div class="left">URI:</div>

 </div>
 </div>
 <div id="stats" class="stats">
 <div class="property">
 <div id="headline" class="row">
 <div class="left">Number of headlines:</div>
 <div class="right" data-testid="wc-number-of-headlines"></div>
 </div>
 <div id="paragraph" class="row">
 <div class="left">Number of paragraph:</div>
 <div class="right" data-testid="wc-number-of-paragraphs"></div>
 </div>
 <div id="lead_text" class="row">
 <div class="left">Number of Lead Text:</div>
 <div class="right" data-testid="wc-number-of-lead-text"></div>
 </div>
 <div id="image" class="row">
 <div class="left">Number of images:</div>

Copyright © 2015-2023 Stibo DX A/S Page 108

CUE Tech Guide

 <div class="right" data-testid="wc-number-of-images"></div>
 </div>
 <div id="video" class="row">
 <div class="left">Number of videos:</div>
 <div class="right" data-testid="wc-number-of-videos"></div>
 </div>
 <div id="embed" class="row">
 <div class="left">Number of embeds:</div>
 <div class="right" data-testid="wc-number-of-embeds"></div>
 </div>
 <div id="others" class="row">
 <div class="left">Others Elements:</div>
 <div class="right" data-testid="wc-number-of-others-elements"></div>
 </div>
 <div id="total" class="row total">
 <div class="left">Total Count:</div>
 <div class="right" data-testid="wc-total-count"></div>
 </div>
 </div>
 <h2>Focus Element Stats:</h2>
 <div class="property">
 <div id="elementName" class="row elementName">
 <div class="left">Story Element:</div>
 <div class="right" data-testid="wc-story-element"></div>
 </div>
 <div id="id" class="elementId">
 <div class="left">Id:</div>
 <div class="right"></div>
 </div>
 <div id="general" class="row">
 <div class="left">Number of general fields:</div>
 <div class="right"></div>
 </div>
 <div id="settings" class="row">
 <div class="left">Number of settings fields:</div>
 <div class="right"></div>
 </div>
 <div id="chars" class="row">
 <div class="left">Number of Chars:</div>
 <div class="right"></div>
 </div>
 </div>

 <h2>Selection Stats:</h2>
 <div class="property">
 <div id="selWords" class="row">
 <div class="left">Number of words:</div>
 <div class="right"></div>
 </div>
 <div id="selChars" class="row">
 <div class="left">Number of Chars:</div>
 <div class="right"></div>
 </div>
 <div id="selVowels" class="row">
 <div class="left">Number of vowels:</div>
 <div class="right"></div>
 </div>
 </div>
 </div>
 <div id="message" class="message">

Copyright © 2015-2023 Stibo DX A/S Page 109

CUE Tech Guide

 No storyline found for this content.
 </div>

 <button id="updateStats">Update Stats</button>
 `;
 }

 connectedCallback() {
 this.updateView();
 if (!this.addStorylineWatcher) {
 return;
 }
 this.addStorylineWatcher(storyline => {
 this.storyline = storyline;
 this.updateView();
 this.fillStoryElementFields();
 });
 this.addStoryElementFocusWatcher(storyElement =>
 this.updateViewOnStoryElementFocus(storyElement)
);
 this.addTextSelectionWatcher(selection =>
 this.updateViewOnSelectionChange(selection)
);

 this.shadowRoot
 .getElementById('updateStats')
 .addEventListener('click', () => {
 this.updateViewOnStoryElementFocus(this.getFocusedStoryElement());
 });
 }

 updateView() {
 this.getContent().then(content => this.updateViewForContent(content));
 if (!this.storyline) {
 this.hideStorylineStats();
 return;
 }
 const totalCount = this.storyline.elements.length;
 const storyElements = this.getStoryElements();
 const getElementsByType = type =>
 storyElements.filter(element => element.model.name === type);

 const headlineCount = getElementsByType('headline_with_limits').length;
 const paragraphCount = getElementsByType('paragraph').length;
 const leadTextCount = getElementsByType('lead_text').length;
 const imageCount = getElementsByType('image').length;
 const videoCount = getElementsByType('video').length;
 const embedCount = getElementsByType('embed').length;
 const others =
 totalCount -
 (headlineCount +
 paragraphCount +
 leadTextCount +
 imageCount +
 videoCount +
 embedCount);

 this.shadowRoot.querySelector('#headline .right').innerHTML = headlineCount;
 this.shadowRoot.querySelector('#paragraph .right').innerHTML =
 paragraphCount;

Copyright © 2015-2023 Stibo DX A/S Page 110

CUE Tech Guide

 this.shadowRoot.querySelector('#lead_text .right').innerHTML =
 leadTextCount;
 this.shadowRoot.querySelector('#image .right').innerHTML = imageCount;
 this.shadowRoot.querySelector('#video .right').innerHTML = videoCount;
 this.shadowRoot.querySelector('#embed .right').innerHTML = embedCount;
 this.shadowRoot.querySelector('#others .right').innerHTML = others;
 this.shadowRoot.querySelector('#total .right').innerHTML = totalCount;
 }

 updateViewForContent(content) {
 if (content.links['self']) {
 const uri = content.links['self'].uri.toString();
 this.shadowRoot.querySelector('#uri .right').setAttribute('href', uri);
 this.shadowRoot.querySelector('#uri .right').innerHTML = uri;
 }
 }

 updateViewOnStoryElementFocus(storyElement) {
 const generalFieldCount = storyElement
 ? storyElement.model.fields.filter(
 field => field.isVisible && !field.isSettings
).length
 : 0;
 const settingsFieldCount = storyElement
 ? storyElement.model.fields.filter(field => field.isSettings).length
 : 0;
 const stringFieldValues = storyElement
 ? storyElement.model.fields
 .filter(field => field.type === 'string')
 .map(field => storyElement.values[field.name])
 .filter(value => !!value)
 : [];
 const charsCount = stringFieldValues.reduce(
 (result, value) => result + value.length,
 0
);

 this.shadowRoot.querySelector('#elementName .right').innerHTML =
 storyElement ? storyElement.model.name : '';

 this.shadowRoot.querySelector('#id .right').innerHTML = storyElement
 ? storyElement.id
 : '';
 this.shadowRoot.querySelector('#general .right').innerHTML =
 generalFieldCount;
 this.shadowRoot.querySelector('#settings .right').innerHTML =
 settingsFieldCount;
 this.shadowRoot.querySelector('#chars .right').innerHTML = charsCount;
 }

 updateViewOnSelectionChange(selection) {
 const selectedText = selection.selectedText;
 const charCount = selectedText.length;
 const vowelCount = (selectedText.match(/[aeiou]/gi) || '').length;
 const wordCount =
 charCount > 0 ? selectedText.trim().split(/\s+/).length : 0;

 this.shadowRoot.querySelector('#selChars .right').innerHTML = charCount;
 this.shadowRoot.querySelector('#selVowels .right').innerHTML = vowelCount;
 this.shadowRoot.querySelector('#selWords .right').innerHTML = wordCount;

Copyright © 2015-2023 Stibo DX A/S Page 111

CUE Tech Guide

 }

 fillStoryElementFields() {
 const storyElements = this.getStoryElements();
 const filteredElements = storyElements.filter(
 element =>
 element.model.name === 'lead_text' ||
 element.model.name === 'headline_with_limits' ||
 element.model.name === 'image'
);
 filteredElements.forEach(storyElement => {
 const singleField = storyElement.model.fields.length === 0;
 storyElement.model.fields.forEach(field => {
 const fieldName = field.name;
 const fieldValue = storyElement.values[fieldName];
 if (
 fieldValue &&
 (fieldValue.search(titleShortcut) > -1 ||
 fieldValue.search(bodyShortcut) > -1)
) {
 const newValue = fieldValue
 .replace(titleShortcut, dummyTitle)
 .replace(bodyShortcut, dummyBody);
 if (singleField) {
 this.updateStoryElementValue(storyElement.id, newValue);
 } else {
 this.setStoryElementFieldValue(
 storyElement.id,
 fieldName,
 newValue
);
 }
 }
 });
 });
 }

 getStoryElements() {
 return this.storyline.elements.map(elementId =>
 this.storyline.storyElements.get(elementId)
);
 }

 hideStorylineStats() {
 this.shadowRoot.getElementById('stats').style.display = 'none';
 this.shadowRoot.getElementById('message').style.display = 'block';
 }
}

customElements.define('storyline-stat', StorylineStatPanel);

class StorylineStatIcon extends cue.core.webcomponents.HomePageMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host { margin: 0; padding: 2px; display: block; } /* Styles the web
 component icon tag */

Copyright © 2015-2023 Stibo DX A/S Page 112

CUE Tech Guide

 .icon:before {
 font: 16px 'cf';
 font-style: normal;
 font-weight: normal;
 color: #444444;
 content: 'St';
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 }
 .icon.active:before {
 color: #09ab00;
 }
 </style>

 `;
 }

 connectedCallback() {
 this.activeStateChanged(this.active);
 this.addActiveWatcher(active => {
 this.activeStateChanged(active);
 });
 }

 activeStateChanged(active) {
 const icon = this.shadowRoot.querySelector('.icon');
 if (active) {
 $(icon).addClass('active');
 } else {
 $(icon).removeClass('active');
 }
 }
}
customElements.define('storyline-stat-icon', StorylineStatIcon);

4.1.2.9 StoryFolderEditorMetadataPanel

cue.core.webcomponents.StorylineEditorMetadataPanel can be used to add a custom
metadata panel section to CUE story folder editors.

It is defined as follows:

export abstract class StoryFolderEditorMetadataPanel extends CUEElement {

 // Returns the storyfolder being edited
 public abstract getStoryFolder: () => webcomponent.Nullable<
 webcomponent.StoryFolder
 >;

 // Function to be called whenever the story folder content changes in the editor
 public abstract addStoryFolderWatcher(watcher: () => void): () => void;
}

4.1.2.9.1 StoryFolderEditorMetadataPanel Configuration

editors:
 metadata:
 - name: "story-folder-info"

Copyright © 2015-2023 Stibo DX A/S Page 113

CUE Tech Guide

 directive: "story-folder-info"
 cssClass: "story-folder-info"
 title: "Story Folder Info" #translate
 webComponent:
 modulePath: "webcomponents/story-folder-info/story-folder-info.js"
 icon: "story-folder-info-icon"
 mimeTypes: ["x-cci/storyfolder"]
 order: 735

4.1.2.9.2 StoryFolderEditorMetadataPanel Example

class StoryFolderInfo extends cue.core.webcomponents
 .StoryFolderEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 padding: 0;
 width: 100%
 }
 h1 {
 color: #9c9c9c;
 font-size: 24px;
 font-weight: 300;
 }
 </style>

 <h1>Story Folder Info</h1>
 <div id="story-folder-info-wrapper"></div>
 `;
 }

 connectedCallback() {
 this.addStoryFolderWatcher(() => this.showStoryFolderInfo());
 this.showStoryFolderInfo();
 }

 showStoryFolderInfo() {
 const storyFolder = this.getStoryFolder();
 const wrapper = this.shadowRoot.querySelector('#story-folder-info-wrapper');
 wrapper.innerHTML = storyFolder
 ? `<div> Stories: ${storyFolder.stories.length}</
span></div>
 <div> Assignments:
${storyFolder.assignments.length} </div>
 <div> Assets: ${storyFolder.contents.length}</
span></div>
 <div> Packages:
${storyFolder.packages.length}</div>`
 : '';
 }
}
customElements.define('story-folder-info', StoryFolderInfo);

Copyright © 2015-2023 Stibo DX A/S Page 114

CUE Tech Guide

class StoryFolderInfoIcon extends cue.core.webcomponents
 .StoryFolderEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 display: block;
 }
 .icon:before {
 font: 16px 'cf';
 font-style: normal;
 font-weight: normal;
 color: #444444;
 content: '\\e846';
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 }
 .icon.active:before {
 color: #09ab00;
 }
 </style>

 `;
 }

 connectedCallback() {
 this.activeStateChanged(this.active);
 this.addActiveWatcher(active => {
 this.activeStateChanged(active);
 });
 }

 activeStateChanged(active) {
 const icon = this.shadowRoot.querySelector('.icon');
 if (active) {
 $(icon).addClass('active');
 } else {
 $(icon).removeClass('active');
 }
 }
}
customElements.define('story-folder-info-icon', StoryFolderInfoIcon);

4.1.2.10 CustomEditorPanel

cue.core.webcomponents.CustomEditorPanel can be used to add a custom editor panel
to a storyline editor. Its purpose is to allow specific storyline types to be extended with custom
functionality. You might, for example, extend a Facebook storyline type with a panel containing a
preview of the post being created. The panel is displayed to the right of the storyline editor itself,
between the editor and the metadata panel. Note that although CustomEditorPanel inherits from
TextEditorMetadataPanel, it can only be used together with storyline editors, not with classic
CUE editors.

It is defined as follows:

Copyright © 2015-2023 Stibo DX A/S Page 115

CUE Tech Guide

export abstract class CustomEditorPanel
 extends TextEditorMetadataPanel
 implements webcomponent.CustomEditor
{
}

4.1.2.10.1 CustomEditorPanel Configuration

The following properties must be defined to configure an editor panel based on
CustomEditorPanel:

- name
The name of the web component, preceded by a hyphen (-). By convention it is usually the same
as the web component's tagName, but does not have to be.

modulePath
The URL of the web component

attributes
Any properties required by this web component

All the properties must be entered as a list item belonging to a customComponents property. They
must be indented correctly and the name property must be preceded by a hyphen (-) to indicate the
start of a new list item. The following example shows the required format:

customComponents
 - name: "custom-preview"
 modulePath: "webcomponents/preview/custom-preview.js"
 attributes:
 renderDelay: 2

The renderDelay attribute specified in the example above is a parameter required by the example
custom-preview web component (see section 4.1.2.10.2).

In order for a custom editor panel defined in this way to actually appear in CUE, you also need to add
a ui:custom-editor element inside one or more storyline-template resources in the Content
Store. A custom editor panel is only displayed alongside a storyline editor if the edited storyline's
template contains a ui:custom-editor element. The ui:custom-editor element specifies which
custom editor panel is to be displayed, its minimum screen width requirement, and how much of the
storyline editor's width it is allowed to occupy. The ui:custom-editor element must appear as a
child of the storyline template's elements element:

<?xml version="1.0"?>
<storyline-template
 xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 name="strict">
 <elements>
 ...
 <ui:custom-editor
 webcomponent="custom-preview"
 width="45%"
 minresolution="960px"/>
 ...
 </elements>
</storyline-template>

Copyright © 2015-2023 Stibo DX A/S Page 116

CUE Tech Guide

For general information about storyline templates and how to edit them, see Storyline Templates. For
a detailed description of the ui:custom-editor element, see custom-editor.

4.1.2.10.2 CustomEditorPanel Example

The following example provides a "live preview" window for storyline editors, that updates as users
edit the storyline. The renderDelay attribute set in the configuration file specifies how long (in
seconds) to wait after the user stops typing before rendering a new preview in the window.

class CustomPreviewPanel extends cue.core.webcomponents.CustomEditorPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 .preview-container {
 width: 100%;
 height: 100%;
 }
 </style>

 <div class="preview-container" id="preview"></div>
 `;
 this.frontBuffer = this.createBuffer();
 this.backBuffer = this.createBuffer();

 const previewDiv = this.shadowRoot.querySelector('#preview');
 previewDiv.append(this.frontBuffer, this.backBuffer);
 }

 async connectedCallback() {
 let typingDebounce; // Debounce timer for content updates
 let renderTimer; // Delay from typing debounce fires till we swap buffers
 let renderDelay = this.hasAttribute('renderDelay')
 ? this.getAttribute('renderDelay') * 1000
 : 1000;

 this.addContentWatcher(async () => {
 window.clearTimeout(typingDebounce);
 window.clearTimeout(renderTimer);
 typingDebounce = window.setTimeout(async () => {
 renderTimer = window.setTimeout(() => this.swapBuffers(), renderDelay);
 this.backBuffer.src = await this.getPreviewURL();
 }, 1000);
 });

 window.setTimeout(() => this.swapBuffers(), renderDelay);
 this.backBuffer.src = await this.getPreviewURL();
 }

 swapBuffers() {
 const tmp = this.backBuffer;
 this.backBuffer = this.frontBuffer;
 this.frontBuffer = tmp;
 this.backBuffer.style.display = 'none';
 this.frontBuffer.style.display = 'block';
 }

Copyright © 2015-2023 Stibo DX A/S Page 117

http://docs.escenic.com/ece-pub-design-guide/7.18/storyline_templates.html
http://docs.escenic.com/ece-resource-ref/7.18/ih_custom_editor.html

CUE Tech Guide

 createBuffer() {
 const buffer = document.createElement('iframe');
 buffer.style.width = '100%';
 buffer.style.height = '100%';
 buffer.style.position = 'absolute';
 buffer.style.top = '0px';
 buffer.style.left = '0px';
 buffer.style.border = '1px solid #e6e6e6';
 buffer.style.display = 'none';
 return buffer;
 }
}
customElements.define('custom-preview', CustomPreviewPanel);

4.1.2.11 ContentSummaryEditor

cue.core.webcomponents.ContentSummaryEditor can be used to extend the functionality of
the content cards used to represent content items in the following contexts:

• The Relations metadata panel in a content editor, when a relation is expanded

• A section page metadata panel, when a teaser is selected

It is defined as follows:

 export abstract class ContentSummaryEditor extends CUEElement {

 // Returns the content summary data as displayed
 public item: webcomponent.Content;

 // Returns the entire content summary
 public content: webcomponent.Content;

 // Returns the content editor tab URL for the content item represented by the
 summary.
 public link: string;
 }

4.1.2.11.1 ContentSummaryEditor Configuration

customComponents:
 - name: "my-additional-editor"
 modulePath: "webcomponents/additional-editor/my-additional-editor.js"

In order for a content summary editor defined in this way to actually appear in CUE, you also need to
add a ui:additional-editor element inside the summary elements of the appropriate content-
type definitions:

<summary>
 ...
 ...
 <ui:additional-editor>my-additional-editor</ui:additional-editor>
</summary>

4.1.2.11.2 ContentSummaryEditor Example

Copyright © 2015-2023 Stibo DX A/S Page 118

CUE Tech Guide

class MyAdditionalEditor extends cue.core.webcomponents.ContentSummaryEditor {
 constructor() {
 super();
 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 padding: 0;
 width: 100%;
 display: block;
 }

 .wc-additional-editor-container {
 padding: 10px;
 height: 150px;
 overflow: hidden;
 }

 .wc-additional-editor-group {
 with: 100%;
 height: auto;
 margin-bottom: 10px;
 font-family: "Hind", Helvetica Neue, Helvetica, Arial, sans-serif;
 color: #797878;
 font-size: 16px;
 }

 .wc-additional-editor-item-name {
 display: block;
 font-size: 12px;
 }

 .wc-additional-editor-item-content {
 display: block;
 font-size: 16px;
 }

 a.wc-additional-editor-link:link, a.wc-additional-editor-link:visited {
 text-decoration: none;
 color: #457dce;
 }

 a.wc-additional-editor-link:hover {
 text-decoration: underline;
 }

 </style>

 <div class="wc-additional-editor-container">

 <div class="wc-additional-editor-group">
 Content Title:
 <span class="wc-additional-editor-item-content" id="wc-additional-editor-
content-title" data-testid="wc-content-title">This is some content title here
 </div>

 <div class="wc-additional-editor-group">
 Teaser Title:

Copyright © 2015-2023 Stibo DX A/S Page 119

CUE Tech Guide

 <span class="wc-additional-editor-item-content" id="wc-additional-editor-
teaser-title" data-testid="wc-teaser-title">This is some title here
 </div>

 <div class="wc-additional-editor-group">
 Type:
 <span class="wc-additional-editor-item-content" id="wc-additional-editor-
type" data-testid="wc-type">bipolar
 </div>

 <div class="wc-additional-editor-group">
 <a href="" target="_blank"
 class="wc-additional-editor-link" id="wc-additional-editor-editor-link">Open
 content
 </div>

 </div>
 `;
 }

 connectedCallback() {
 const contentTitle = this.content.values.title;
 this.shadowRoot.querySelector(
 '#wc-additional-editor-content-title'
).innerHTML = contentTitle;
 const title = this.item.values.teaserTitle;
 this.shadowRoot.querySelector(
 '#wc-additional-editor-teaser-title'
).innerHTML = title;
 const type = this.content.mimeType;
 this.shadowRoot.querySelector('#wc-additional-editor-type').innerHTML =
 type;
 const editorLink = this.link;
 this.shadowRoot.querySelector('#wc-additional-editor-editor-link').href =
 editorLink;
 }
}

customElements.define('my-additional-editor', MyAdditionalEditor);

4.1.2.12 CustomFieldEditor

cue.core.webcomponents.CustomFieldEditor can be used to create a custom field editor.

It is defined as follows:

export abstract class CustomFieldEditor extends CUEElement
 implements webcomponent.CustomFieldEditor {

 // Field MIME type as defined in the content type
 public mimeType: string;

 // Sets the value of the specified field (that is a different field from this one)
 public abstract setFieldValue(fieldName: string, value: any): void;

 // Function to be called whenever the value of this field changes
 public abstract addValueWatcher(watcher: (value: any) => void): () => void;

 // Sets the value of this field

Copyright © 2015-2023 Stibo DX A/S Page 120

CUE Tech Guide

 public abstract setValue(value: any): void;

 // The value of this field
 public abstract getValue(): any;

 // Function to be called whenever the read-only status of this field changes
 public abstract addReadonlyWatcher(watcher: (value: boolean) => void): () => void;

 // The read-only status of this field
 public abstract isReadOnly(): boolean;

 // Returns the content being edited in the editor
 public abstract getContent(): Promise<webcomponent.Content>;

 // Returns the id of the content item being edited in the editor
 getArticleId(): Nullable<string>;

 // Returns the URI of the content item being edited in the editor
 getArticleUri(): Nullable<string>;

 // Returns the content type of the content item being edited in the editor
 getContentType(): Nullable<ContentType>;

 // Returns the state of the content item being edited in the editor
 getState(): Nullable<webcomponent.ContentState>;

 // Returns the published date of the content item being edited in the editor
 getPublishedDate(): Nullable<moment.Date>;
}

4.1.2.12.1 CustomFieldEditor Configuration

The following properties must be defined to configure a custom field editor based on
CustomFieldEditor:

- name
The name of the web component. The name you specify must contain a hyphen. Remember also
that the id property name must be preceded by a hyphen (-).

tagName
The name of the custom HTML element that is used to encapsulate the component: the name
used in the document.registerElement() call in the component's script element.

modulePath
The URI of the component.

All the properties must be entered as a list item belonging to a customComponents property. They
must be indented correctly and the id property must be preceded by a hyphen (-) to indicate the start
of a new list item. The following example shows the required format:

customComponents:
 - name: "custom-slider"
 tagName: "my-slider"
 modulePath: "http://www.example.com/webcomponents/my-slider.js"

Copyright © 2015-2023 Stibo DX A/S Page 121

CUE Tech Guide

4.1.2.12.2 Custom Field Editor Invocation

To use a custom field editor for a particular field, you need to add a ui:editor to the field's definition
in the content-type resource. The ui:editor element has two attributes:

type
This must always be set to web-component.

name
This must be set to the name of the component as defined in the field editor configuration file.

To use the slider field editor defined in section 4.1.2.12.1, for example, you would need to add the
following ui-editor element to your field definition:

<field type="number" name="percentage">
 <ui:label>Percentage</ui:label>
 <ui:editor type="web-component" name="custom-slider"/>
</field>

4.1.2.12.3 CustomFieldEditor Example

class NumberSlider extends cue.core.webcomponents.CustomFieldEditor {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 padding: 0px;
 width: 100%;
 display: block;
 }

 .spacer {
 padding: 10px;
 height: 30px;
 overflow: hidden;
 }

 #thefield {
 width: 100%;
 }
 </style>
 <div class="spacer">
 <input id="thefield" type="range" max="100" min="0" value="0">

 </div>
 `;
 }

 connectedCallback() {
 this.updateViewValue();
 this.updateReadOnly();
 this.shadowRoot
 .querySelector('input')
 .addEventListener('input', () => this.updateModelValue());
 this.addValueWatcher(value => {

Copyright © 2015-2023 Stibo DX A/S Page 122

CUE Tech Guide

 this.updateViewValue();
 });
 this.addReadonlyWatcher(value => {
 this.updateReadOnly();
 });
 }

 updateViewValue() {
 this.shadowRoot.querySelector('input').value = this.getValue();
 }

 updateModelValue() {
 this.setValue(parseInt(this.shadowRoot.querySelector('input').value));
 }

 updateReadOnly() {
 this.shadowRoot.querySelector('input').disabled = this.isReadOnly();
 }
}
customElements.define('number-slider', NumberSlider);

4.1.2.13 CustomStoryElementEditor

cue.core.webcomponents.CustomStoryElementEditor can be used to create a custom field
editor for a field belonging to a story element.

It is defined as follows:

export abstract class CustomStoryElementEditor extends CustomFieldEditor

 /*** from CustomFieldEditor interface ***/

 // Field MIME type as defined in the content type
 public mimeType: string;

 // Sets the value of a Content field outside the storyline
 public abstract setFieldValue(fieldName: string, value: any): void;

 // Function to be called whenever the value of this field changes
 public abstract addValueWatcher(watcher: (value: any) => void): () => void;

 // Sets the value of this field
 public abstract setValue(value: any): void;

 // Returns the value of this field
 public abstract getValue(): any;

 // Function to be called whenever the read-only status of the story element changes
 public abstract addReadonlyWatcher(watcher: (value: boolean) => void): () => void;

 // The read-only status of the story element
 public abstract isReadOnly(): boolean;

 // Returns the complete story content being edited in the editor
 public abstract getContent(): Promise<webcomponent.Content>;

 // Function to be called whenever the content changes
 public abstract addContentWatcher(watcher: (content: webcomponent.Content) => void):
 () => void;

Copyright © 2015-2023 Stibo DX A/S Page 123

CUE Tech Guide

 // Returns the id of the content item being edited in the editor
 getArticleId(): Nullable<string>;

 // Returns the URI of the content item being edited in the editor
 getArticleUri(): Nullable<string>;

 // Returns the content type of the content item being edited in the editor
 getContentType(): Nullable<ContentType>;

 // Returns the state of the content item being edited in the editor
 getState(): Nullable<webcomponent.ContentState>;

 // Returns the published date of the content item being edited in the editor
 getPublishedDate(): Nullable<moment.Date>;

 /*** CustomStoryElementEditor interface ***/

 // Returns the storyline being edited in the editor
 public abstract getStoryline(): Promise<webcomponent.Storyline>;

 // Returns story element. Undefined storyElementId means the story element where the
 custom field resides
 public abstract getStoryElement(storyElementId?: string):
 Promise<webcomponent.StoryElement>;

 // Returns value of field inside story element. Undefined storyElementId means the
 story element where the custom field resides
 public abstract getStoryElementFieldValue(fieldName: string, storyElementId?:
 string): any;

 // Sets value of field inside story element. Undefined storyElementId means the
 story element where the custom field resides
 public abstract setStoryElementFieldValue(fieldName: string, value: any,
 storyElementId?: string): void;

 // Function to be called whenever the storyline changes
 public abstract addStorylineWatcher(watcher: (storyline: webcomponent.Storyline) =>
 void): () => void;

 // Function to be called whenever the story element changes. Undefined
 storyElementId means the story element where the custom field resides
 public abstract addStoryElementWatcher(watcher: (storyElement:
 webcomponent.StoryElement) => void): () => void;

 // Function to be called whenever the storylines text selection changes
 public abstract addTextSelectionWatcher(watcher: (selection:
 webcomponent.StorylineTextSelection) => void): () => void;

 // Returns current text selection
 public abstract getTextSelection(): webcomponent.StorylineTextSelection | undefined;
}

4.1.2.13.1 CustomStoryElementEditor Configuration

The following properties must be defined to configure a custom field editor based on
CustomStoryElementEditor:

Copyright © 2015-2023 Stibo DX A/S Page 124

CUE Tech Guide

- name
The name of the web component. The name you specify must contain a hyphen. Remember also
that the id property name must be preceded by a hyphen (-).

tagName
The name of the custom HTML element that is used to encapsulate the component: the name
used in the document.registerElement() call in the component's script element.

modulePath
The URI of the component.

All the properties must be entered as a list item belonging to a customComponents property. They
must be indented correctly and the id property must be preceded by a hyphen (-) to indicate the start
of a new list item. The following example shows the required format:

customComponents:
 - name: "custom-slider"
 tagName: "my-slider"
 modulePath: "http://www.example.com/webcomponents/my-slider.js"

4.1.2.13.2 CustomStoryElementEditor Invocation

To use a custom field editor for a particular story element field, you need to add a ui:editor to the
field's definition in the storyline definition. The ui:editor element has two attributes:

type
This must always be set to web-component.

name
This must be set to the name of the component as defined in the field editor configuration file.

To use the slider field editor defined in section 4.1.2.13.1, for example, you would need to add the
following ui-editor element to your field definition:

<field type="number" name="percentage">
 <ui:label>Percentage</ui:label>
 <ui:editor type="web-component" name="custom-slider"/>
</field>

4.1.2.13.3 CustomStoryElementEditor Example

class MySlider extends cue.core.webcomponents.CustomStoryElementEditor {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host {
 margin: 0;
 padding: 0px;
 width: 100%;
 display: block;
 }

 .spacer {
 padding: 10px;
 height: 30px;

Copyright © 2015-2023 Stibo DX A/S Page 125

CUE Tech Guide

 overflow: hidden;
 }

 #thefield {
 width: 100%;
 }
 </style>
 <div class="spacer">
 <input id="thefield" type="range" max="100" min="0" value="0">

 </div>
 `;
 }

 connectedCallback() {
 this.updateViewValue();
 this.updateReadOnly();
 this.shadowRoot.querySelector('input').addEventListener('input', () =>
 this.updateModelValue());
 this.addValueWatcher((value) => {
 this.updateViewValue();
 });
 this.addReadonlyWatcher((value) => {
 this.updateReadOnly();
 });
 }

 updateViewValue() {
 this.shadowRoot.querySelector('input').value = this.getValue();
 };

 updateModelValue() {
 this.setValue(parseInt(this.shadowRoot.querySelector('input').value));
 };

 updateReadOnly() {
 this.shadowRoot.querySelector('input').readOnly = this.isReadOnly();
 };
}
customElements.define('custom-slider', MySlider);

4.1.2.14 Sending Notifications from Web Components

You can send notifications from your web components. These notifications will appear in CUE's
notification center in exactly the same way as CUE's own notifications. Notifications are managed
by the notification object, which is exposed as a property of all CUE web component objects. It
provides two methods - one for showing notifications, and one for hiding them.

 interface Notification {
 /**
 * Displays a notification in the notification center.
 * Returns the notification id as a string.
 * @param title Title of the notification
 * @param body Content of the notification
 */
 show(title: string, body: string): Promise<string>;

 /**
 * Removes anotification from the notification center.
 * @param notificationId The id ofthe notification to remove

Copyright © 2015-2023 Stibo DX A/S Page 126

CUE Tech Guide

 */
 hide(notificationId: string): Promise<boolean>;
 }

4.1.2.14.1 Web Component Notification Example

This example shows part of a web component in which a drop handler listens for drop events in a
particular HTML element and sends notifications each time one occurs.

let notificationId;
connectedCallback() {
 this.shadowRoot.querySelector('div').addEventListener('dragover', event => {
 event.preventDefault();
 event.stopPropagation();
 });
 this.shadowRoot.querySelector('div').addEventListener('drop', event =>
 this.dropHandler(event));
}

dropHandler(event) {
 event.preventDefault();

 const uriList = event.dataTransfer.getData('text/uri-list');
 const uri = event.dataTransfer.getData('x-cue/uri');
 this.shadowRoot.querySelector('#uri-list .right').innerHTML = uriList;
 this.shadowRoot.querySelector('#uri .right').innerHTML = uri;
 const notification = this.notification;
 if (notification) {
 if (this.notificationId) {
 notification.hide(this.notificationId);
 }
 notification
 .show('Drop Data', `URI: ${uri}. URI List: ${uriList}.`)
 .then(notificationId => (this.notificationId = notificationId));
 }
}

4.1.2.15 Adding Dialogs to Web Components

cue.core.webcomponents.CUEElement has a dialog property that provides a range of methods
for adding dialogs to your web components:

interface Dialog {
 showOneButton(
 message: string,
 title: string,
 buttonLabel: string = 'OK'
): Promise<void>;
 showTwoButton(
 message: string,
 title: string,
 okLabel: string = 'OK',
 cancelLabel: string = 'Cancel',
 setOkAsDefault: boolean = true
): Promise<void>;
 showError(message: string): Promise<void>;
 showWarning(message: string): Promise<void>;
 showVdf(

Copyright © 2015-2023 Stibo DX A/S Page 127

CUE Tech Guide

 vdfPayload: string,
 title: string,
 okLabel: string = 'OK',
 cancelLabel: string = 'Cancel',
 setOkAsDefault: boolean = true
): Promise<Content>;
}

The Dialog methods can therefore be called from any of the CUE web components as follows:

this.dialog.function_name(_params)

For example:

this.dialog.showOneButton("Do you want to continue?", "Continue Dialog")

The methods are described in more detail in the following sections.

4.1.2.15.1 showOneButton

showOneButton(
 message: string,
 title: string,
 buttonLabel?: string = 'OK'
): Promise<void>;

Displays a simple one-button dialog. It has the following parameters:

message
The message to display in the dialog.

title
The dialog title.

buttonLabel
The label to display on the dialog's only button ("OK" by default).

4.1.2.15.2 showTwoButton

showTwoButton(
 message: string,
 title: string,
 okLabel: string = 'OK',
 cancelLabel: string = 'Cancel',
 setOkAsDefault: boolean = true
): Promise<void>;

Displays a simple two-button dialog. It has the following parameters:

message
The message to display in the dialog.

title
The dialog title.

okLabel
The label to display on the dialog's OK button ("OK" by default).

Copyright © 2015-2023 Stibo DX A/S Page 128

CUE Tech Guide

cancelLabel
The label to display on the dialog's Cancel button ("Cancel" by default).

setOkAsDefault
If true (the default) then the OK button in the dialog is set as the default choice.

4.1.2.15.3 showError

showError(message: string): Promise<void>;

Displays a simple dialog containing an error message and a Close button. It has one parameter:

message
The error message to display in the dialog.

4.1.2.15.4 showWarning

showWarning(message: string): Promise<void>;

Displays a simple dialog containing a warning message and a Close button. It has one parameter:

message
The warning message to display in the dialog.

4.1.2.15.5 ShowVdf

showVdf(
 vdfPayload: string,
 title: string,
 okLabel: string = 'OK',
 cancelLabel: string = 'Cancel',
 setOkAsDefault: boolean = true
): Promise<Content>;

Displays a dialog containing a title, custom contents defined in a VDF file and two buttons with the
default labels OK and Cancel. The VDF file is submitted via the vdfPayload argument.

Displays a two-button dialog with custom content. It has the following parameters:

vdfPayload
A VDF document defining the content to display in the dialog. For further information, see
section 4.1.2.15.6.

title
The dialog title.

okLabel
The label to display on the dialog's OK button ("OK" by default).

cancelLabel
The label to display on the dialog's Cancel button ("Cancel" by default).

setOkAsDefault
If true (the default) then the OK button in the dialog is set as the default choice.

Copyright © 2015-2023 Stibo DX A/S Page 129

CUE Tech Guide

4.1.2.15.6 Defining Custom Dialogs

The ShowVdf() method must be supplied with a VDF payload document defining the content of the
dialog to be displayed. VDF is an XML format used to represent content items - for details, see the
Content Engine Integration Guide. Here, VDF is used define a sequence of field values to be displayed
in the dialog. For example:

<vdf:payload
 xmlns:vdf="http://www.vizrt.com/types"
 model="webcomponents/simple-dialog/vdfEditorModel.xml">
 <vdf:field name="title">
 <vdf:value>This is a title</vdf:value>
 </vdf:field>
 <vdf:field name="body">
 <vdf:value>
 <div xmlns="http://www.w3.org/1999/xhtml">
 <p>This is some body text.</p>
 </div>
 </vdf:value>
 </vdf:field>
</vdf:payload>

A VDF payload document only contains field values, it does not contain any metadata about the fields.
You must therefore always create a VDF model document as well, which is referenced from the payload
document. The example shown above references a model called vdfEditorModel.xml, which looks
like this:

<vdf:model xmlns:vdf="http://www.vizrt.com/types"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 xmlns:atom="http://www.w3.org/2005/Atom">
 <vdf:schema>
 <vdf:fielddef name="title" label="Title" mediatype="text/plain" xsdtype="string">
 <ui:label>Title</ui:label>
 <ui:description>The title of the article</ui:description>
 </vdf:fielddef>
 <vdf:fielddef name="body" label="Body text" mediatype="application/xhtml+xml"
 xsdtype="string">
 <ui:label>Body text</ui:label>
 <ui:description>The body text of the article.</ui:description>
 <ui:style>body { min-height: 200px; }</ui:style>
 </vdf:fielddef>
 </vdf:schema>
</vdf:model>

Together, the VDF payload and model provide sufficient information for ShowVdf() to construct the
dialog.

You can use ShowVdf() to create dialogs containing any of the field types supported by CUE.

4.1.2.15.7 Dialog Example

The following example web component creates a metadata panel section containing a series of forms
that you can use to display demo dialogs. It has no practical function, it is simply a demonstration of
how the various dialog methods work, and what kind of dialogs they display. The web component is
created using the cue.core.webcomponents.StorylineEditorMetadataPanel class and is
configured as follows:

Copyright © 2015-2023 Stibo DX A/S Page 130

http://docs.escenic.com/ece-integration-guide/7.18/

CUE Tech Guide

customComponents:
 - name: "simple-dialog"
 tagName: "simple-dialog"
 modulePath: "webcomponents/simple-dialog/simple-dialog.js"
 attributes:
 title: "Simple Dialog"
 icon: "simple-dialog-icon"

Here is the web component code:

class SimpleDialog extends cue.core.webcomponents.TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>
 :host { margin:0; padding: 0; width: 100%; display:block; }
 h1, h2, h3, h4 {
 color: #9c9c9c;
 }

 /* Panel specific inputs */
 .text-field {
 height: 32px;
 vertical-align: middle;
 font-family: 'Hind', Helvetica Neue, Helvetica, Arial, Sans-serif;
 font-weight: lighter;
 font-size: 18px;
 line-height: 1.3;
 color: #444444;
 cursor: pointer;
 border-radius: 3px;
 width: 100%;
 }

 .text-area {
 height: 128px;
 font-family: 'Hind', Helvetica Neue, Helvetica, Arial, Sans-serif;
 font-weight: lighter;
 font-size: 18px;
 color: #444444;
 cursor: pointer;
 border-radius: 3px;
 width: 100%;
 }

 button,
 input[type=submit],
 input[type=cancel],
 input[type=button] {
 height: 32px;
 border: none;
 background: #d3d3d3;
 vertical-align: middle;
 font-family: 'Hind', Helvetica Neue, Helvetica, Arial, Sans-serif;
 font-weight: lighter;
 font-size: 18px;
 line-height: 1.3;

Copyright © 2015-2023 Stibo DX A/S Page 131

CUE Tech Guide

 color: #444444;
 padding: 2px 10px 0 10px;
 cursor: pointer;
 border-radius: 3px;
 width: 100%;
 }
 button:hover {
 background: #e5e5e5;
 }
 .group {
 padding: 20px;
 }
 .spacer {
 padding:10px
 }
 p {
 margin: 0;
 }
 </style>
 <div>
 <h1>Simple Dialog API</h1>
 <h2>A Web Component</h2>
 </div>
 <hr>
 <div class="group">
 <h3>Simple Customizable Dialogs</h3>
 <p></p>
 <div class="spacer"></div>
 <p>Title</p>
 <input class ="text-field" type="text" id="simple-title" value="Simple
 Dialog">
 <p>Message</p>
 <textarea class="text-area" id="simple-message" rows="5" >description</
textarea>
 <p>Button Label</p>
 <input class ="text-field" type="text" id="simple-button-label"
 value="Ok">
 <div class="spacer"></div>
 <button id="simple-button" data-testid="wc-simple-button">Show One Button
 Dialog</button>
 </div>
 <hr>
 <div class="group">
 <h3>Customizable Reactive Dialogs</h3>
 <p>The dialog API exposes customizable dialogs with positve and negative
 options. The answer is a Promise that is resolved or rejected.</p>
 <div class="spacer"></div>
 <p>Title</p>
 <input class ="text-field" type="text" id="two-button-title" value="OK or
 Cancel dialog">
 <p>Message</p>
 <textarea class="text-area" id="two-button-message" rows="5" >Using this
 dialog one can promt the user for a positive or negative answer. The answer can be
 used for further action.</textarea>
 <p>Cancel label</p>
 <input class ="text-field" type="text" id="two-button-cancel-label"
 value="Cancel">
 <p>Ok Label</p>
 <input class ="text-field" type="text" id="two-button-ok-label"
 value="Ok">

Copyright © 2015-2023 Stibo DX A/S Page 132

CUE Tech Guide

 <label for="two-button-use-default-buttons"> Use default buttons</label>
 <input type="checkbox" id="two-button-use-default-buttons" checked>
 <div class="spacer"></div>
 <div class="spacer"></div>
 <button id="two-button-button" data-testid="wc-show-two-button">Show Two
 Button Dialog</button>
 <div class="spacer"></div>

 <p>output:</p>
 <input disabled class ="text-field" type="text" id="two-button-output"
 value="" data-testid="wc-two-button-output">
 </div>
 <hr>
 <div class="group">

 <h3>Input validation using Dialogs</h3>
 <p>The Dialos API can be used to validate input from the user.</p>
 <div class="spacer"></div>
 <p>Which City was the European Capital of Culture 2017?</p>
 <input class ="text-field" type="text" id="answer" value="">
 <div class="spacer"></div>
 <button id="quiz-button">Answer question</button>

 <div class="spacer"></div>
 <p>Insert a number between 5 and 10</p>
 <input class ="text-field" type="number" id="numberField" value="">
 <div class="spacer"></div>
 <button type="submit"id="numValidation">Submit</button>
 <div class="spacer"></div>

 </div>
 <hr>
 <div class="group">
 <h3>Alert Dialogs</h3>
 <p>The dialog API exposes two levels of alert dialogs; Warning and Error.
 A description of the problem can be passed to the dialog.</p>
 <div class="spacer"></div>
 <p>Type alert message:</p>
 <textarea class="text-area" id="error-msg" rows="5" >A error dialog can be
 used to notify the user, who is about to do something is not permitted</textarea>
 <div class="spacer"></div>
 <button id="openWarningDialog" data-testid="wc-warning-dialog"
 class="buttons">Warning Dialog</button>
 <div class="spacer"></div>
 <button id="openErrorDialog" data-testid="wc-error-dialog"
 class="buttons">Error Dialog</button>
 <div class="spacer"></div>
 </div>

 <hr>
 <h2>Advanced Dialog API</h2>
 <p>The advanced API is based on VDF models.</p>
 <div class="group">
 <h3>A dialog editor</h3>
 <p>Values can be passed to the dialog</p>
 <p>Top</p>
 <input class="text-field" type="text" id="editor-top" value="top">
 <p>Titel</p>
 <input class="text-field" type="text" id="editor-title" value="title">
 <p>Cancel label</p>

Copyright © 2015-2023 Stibo DX A/S Page 133

CUE Tech Guide

 <input class ="text-field" type="text" id="editor-cancel-label"
 value="Cancel">
 <p>Ok Label</p>
 <input class ="text-field" type="text" id="editor-ok-label" value="Ok">
 <label for="editor-use-default-buttons"> Use default buttons</label>
 <input type="checkbox" id="editor-use-default-buttons" checked>
 <div class="spacer"></div>
 <button id="editor">Editor Dialog</button>
 <div class="spacer"></div>
 <p>body output:</p>

 </div>
 <hr>
 <div class="group">
 <h3>Custom Components</h3>
 <p>The VDF based dialog API is extensible by allowing combining with other
 web components</p>
 <h4>Custom Slider</h4>
 <p>Using the custom slider web component to set a number value</p>
 <button id="custom-slider">Custom Slider Dialog</button>
 <div class="spacer"></div>
 <p>Slider output:</p>

 <h4>Google Maps</h4>
 <p>Using the geo code web component to retrieve coordinates based on user
 input</p>
 <button id="gmaps">Google Maps Dialog</button>
 <div class="spacer"></div>
 Latitude: <span class="text-field" type="text" id="gmaps-
lat">

 Longitude: <span class="text-field" type="text" id="gmaps-
long">
 </div>

 `;
 }

 connectedCallback() {
 this.shadowRoot
 .getElementById('simple-button')
 .addEventListener('click', () => {
 // Get the dialog configurations
 const top = this.shadowRoot.querySelector('#simple-title').value;
 const description =
 this.shadowRoot.querySelector('#simple-message').value;
 const buttonLabel = this.shadowRoot.querySelector(
 '#simple-button-label'
).value
 ? this.shadowRoot.querySelector('#simple-button-label').value
 : undefined;
 // Call the dialog api
 this.dialog.showOneButton(description, top, buttonLabel);
 });

 this.shadowRoot
 .getElementById('two-button-button')
 .addEventListener('click', () => {
 // Get the dialog configurations

Copyright © 2015-2023 Stibo DX A/S Page 134

CUE Tech Guide

 const top = this.shadowRoot.querySelector('#two-button-title').value;
 const description = this.shadowRoot.querySelector(
 '#two-button-message'
).value;
 const okButtonLabel = this.shadowRoot.querySelector(
 'input[id="two-button-ok-label"]'
).value
 ? this.shadowRoot.querySelector('input[id="two-button-ok-label"]')
 .value
 : undefined;
 const cancelButtonLabel = this.shadowRoot.querySelector(
 'input[id="two-button-cancel-label"]'
).value
 ? this.shadowRoot.querySelector('input[id="two-button-cancel-label"]')
 .value
 : undefined;
 const useDefaultButtons = this.shadowRoot.querySelector(
 '#two-button-use-default-buttons'
).checked;

 // Call the dialog api
 this.dialog
 .showTwoButton(
 description,
 top,
 okButtonLabel,
 cancelButtonLabel,
 useDefaultButtons
)
 .then(
 // if promise is resolved
 () => {
 this.shadowRoot.querySelector(
 'input[id="two-button-output"]'
).value = okButtonLabel ? okButtonLabel : 'OK';
 },
 //if promise is rejected
 () => {
 this.shadowRoot.querySelector(
 'input[id="two-button-output"]'
).value = cancelButtonLabel ? cancelButtonLabel : 'Cancel';
 }
);
 });

 this.shadowRoot
 .getElementById('quiz-button')
 .addEventListener('click', () => {
 const answer =
 this.shadowRoot.querySelector('input[id="answer"]').value;
 try {
 const possibleAnswers = ['aarhus', 'århus'];
 let correct = false;
 possibleAnswers.forEach(ans => {
 if (answer.toLowerCase().localeCompare(ans) === 0) correct = true;
 });

 if (!correct) {
 throw Error(
 'No "' +

Copyright © 2015-2023 Stibo DX A/S Page 135

CUE Tech Guide

 answer +
 '"' +
 ' was not the European Capital of Culture 2017'
);
 }
 this.dialog.showOneButton(
 'Yes, it is correct that the European Capital of Culture 2017 is "Århus"',
 'Correct',
 'Yaay',
 true
);
 } catch (error) {
 this.dialog.showOneButton(error.message, 'Incorrect', 'Oops', true);
 }
 });

 this.shadowRoot
 .getElementById('numValidation')
 .addEventListener('click', () => {
 let x = this.shadowRoot.querySelector('input[id="numberField"]').value;
 try {
 if (x == '') throw new Error('field is empty');
 if (isNaN(x)) throw new Error('input is not a number');
 x = Number(x);
 if (x < 5) throw new Error('input is too low');
 if (x > 10) throw new Error('input is too high');
 this.dialog.showOneButton(
 'Yes, number is between 5 an 10',
 'Good Job',
 'Thanks',
 true
);
 } catch (error) {
 this.dialog.showOneButton(
 error.message,
 'Invalid Input',
 "I'll try again",
 'Please try again'
);
 }
 });

 this.shadowRoot
 .getElementById('openWarningDialog')
 .addEventListener('click', () => {
 const description = this.shadowRoot.querySelector('#error-msg').value;
 this.dialog.showWarning(description);
 });

 this.shadowRoot
 .getElementById('openErrorDialog')
 .addEventListener('click', () => {
 const description = this.shadowRoot.querySelector('#error-msg').value;
 this.dialog.showError(description);
 });

 this.shadowRoot.getElementById('editor').addEventListener('click', () => {
 const top = this.shadowRoot.querySelector('#editor-top').value;
 const title = this.shadowRoot.querySelector('#editor-title').value;
 const okButtonLabel = this.shadowRoot.querySelector(

Copyright © 2015-2023 Stibo DX A/S Page 136

CUE Tech Guide

 'input[id="editor-ok-label"]'
).value
 ? this.shadowRoot.querySelector('input[id="editor-ok-label"]').value
 : undefined;
 const cancelButtonLabel = this.shadowRoot.querySelector(
 'input[id="editor-cancel-label"]'
).value
 ? this.shadowRoot.querySelector('input[id="editor-cancel-label"]').value
 : undefined;
 const useDefaultButtons = this.shadowRoot.querySelector(
 '#editor-use-default-buttons'
).checked;
 // Call the dialog api
 this.dialog
 .showVdf(
 `
 <vdf:payload xmlns:vdf="http://www.vizrt.com/types" model="webcomponents/
simple-dialog/vdfEditorModel.xml">
 <vdf:field name="title">
 <vdf:value>` +
 title +
 `</vdf:value>
 </vdf:field>
 <vdf:field name="body">
 <vdf:value>
 <div xmlns="http://www.w3.org/1999/xhtml">
 <p>this is body</p>
 </div>
 </vdf:value>
 </vdf:field>
 </vdf:payload>`,
 top,
 okButtonLabel,
 cancelButtonLabel,
 useDefaultButtons
)
 .then(
 // if promise is resolved
 res => {
 this.shadowRoot.querySelector('#editor-output').innerHTML =
 res.values.body;
 },
 //if promise is rejected
 res => {
 console.log(res);
 }
);
 });

 this.shadowRoot
 .getElementById('custom-slider')
 .addEventListener('click', () => {
 // Call the dialog api
 this.dialog
 .showVdf(
 `
 <vdf:payload xmlns:vdf="http://www.vizrt.com/types" model="webcomponents/
simple-dialog/vdfCustomSliderModel.xml">
 <vdf:field name="customSlider">
 <vdf:value> 0 </vdf:value>

Copyright © 2015-2023 Stibo DX A/S Page 137

CUE Tech Guide

 </vdf:field>
 </vdf:payload>`,
 'Custom Slider'
)
 .then(
 // if promise is resolved
 res => {
 console.log(res);
 this.shadowRoot.querySelector('#slider-output').innerHTML =
 res.values.customSlider;
 },
 //if promise is rejected
 res => {
 console.log(res);
 }
);
 });

 this.shadowRoot.getElementById('gmaps').addEventListener('click', () => {
 // Call the dialog api
 this.dialog
 .showVdf(
 `
 <vdf:payload xmlns:vdf="http://www.vizrt.com/types" model="webcomponents/
simple-dialog/vdfGmapsModel.xml">
 <vdf:field name="newGeoEditor">
 <vdf:value>{"latitude":56.162939,"longitude":10.203921,"zoom":10}</
vdf:value>
 </vdf:field>
 </vdf:payload>`,
 'Google Maps Dialog'
)
 .then(
 // if promise is resolved
 res => {
 console.log(res);
 const data = $.parseJSON(res.values.newGeoEditor);
 this.shadowRoot.querySelector('#gmaps-lat').innerHTML =
 Math.round(data.latitude * 100) / 100;
 this.shadowRoot.querySelector('#gmaps-long').innerHTML =
 Math.round(data.longitude * 100) / 100;
 },
 //if promise is rejected
 res => {
 console.log(res);
 }
);
 });
 }
}
customElements.define('simple-dialog', SimpleDialog);

class SimpleDialogIcon extends cue.core.webcomponents.TextEditorMetadataPanel {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <style>

Copyright © 2015-2023 Stibo DX A/S Page 138

CUE Tech Guide

 :host { margin: 0 0px 0 0px; width: 26px; display: inline; float: left;
 margin-right: 18px; }
 img { width: 20px; position: relative; }
 </style>

 `;

 this.activeIconPath = 'simple-dialog-icon.png';
 this.inactiveIconPath = 'simple-dialog-icon.png';
 }
 connectedCallback() {
 this.activeStateChanged(this.active);
 this.addActiveWatcher(active => {
 this.activeStateChanged(active);
 });
 }

 activeStateChanged(active) {
 let img = this.shadowRoot.querySelector('img.icon');
 if (active) {
 img.src = this.getAbsolutePath(this.activeIconPath);
 } else {
 img.src = this.getAbsolutePath(this.inactiveIconPath);
 }
 }
 getAbsolutePath(path) {
 const baseURI = import.meta.url;
 return baseURI.substring(0, baseURI.lastIndexOf('/') + 1) + path;
 }
}
customElements.define('simple-dialog-icon', SimpleDialogIcon);

4.1.3 The CUE Native Controls

The controls described in this section can be used in editor and home page panels and metadata
sections. They are native CUE controls, and as such will match the look and feel of other CUE controls.
They will be automatically updated to reflect any UI changes made in future versions of CUE, and may
also benefit from any applicable improvements made to future versions of CUE. For this reason you
are strongly recommended to use these controls in your web components where possible.

The native controls are made available as web components, and can be used in the same way as other
web components.

Currently, the following controls are available:

CUE Text Area
This object provides a standard CUE-style plain text input field.

CUE Checkbox
This object provides a standard CUE-style checkbox.

CUE Number Input
This object provides a standard CUE-style numerical input field.

4.1.3.1 The CUE Text Area Control

The cue-text-area element displays a text area control with the standard CUE look and feel.

Copyright © 2015-2023 Stibo DX A/S Page 139

CUE Tech Guide

4.1.3.1.1 cue-text-area Atttributes

A cue-text-area element has the following attributes:

id (string)
The control's element ID.

label (string)
The control's label

compact (boolean)
If set to true, changes the control layout to "compact" mode (currently, the label disappears).

compressed (boolean)
If set to true, changes the control layout to "compressed" mode (currently, reduces its size).

last (boolean)
If set to true, indicates that this is the last control in a component, activating any layout
adjustments required in that position.

read-only (boolean)
If true, makes the control read-only. Any value displayed in the input field is grayed out.

info (string)
Can be used to display additional information about the purpose of the control. If set, the
information is currently displayed below the input field.

error (string)
An error message, currently displayed in red below the input field, after the info string.

title-field (string)
If set to true, the control is presumed to represent a title field, and displayed accordingly
(highlighted in some way).

web-component-events (string)
Can be used to make the control respond to other DOM events. The event names must be
specified as a comma-separated list, for example:

web-component-events="dblclick,contextmenu"

If you do this, then you must then also supply code to catch and handle the resulting events, in
the same way as you handle the control's default events (see section 4.1.3.1.2).

value (string)
The value displayed in the control.

4.1.3.1.2 cue-text-area Events

By default, a cue-text-area element responds to the following DOM events:

focus
When the control acquires the focus, a CustomEvent is sent to the listener.

blur
When the control loses the focus, a CustomEvent is sent to the listener.

valueChange
When the control's value changes, a CustomEvent containing the new value is sent to the
listener.

Copyright © 2015-2023 Stibo DX A/S Page 140

CUE Tech Guide

It can also respond to other events specified with the control's web-component-events
attribute (see section 4.1.3.1.1). It will respond to such events in exactly the same way, by sending a
CustomEvent to the listener.

4.1.3.1.3 cue-text-area Example

The following minimal example shows how you can make use of the cue-text-area control in your
web components. The example code only handles one of the control's events, valueChange. The same
basic technique can, however be used to handle the control's other default events, or any additional
events specified via the web-component-events attribute.

class TextAreaWebComponent extends cue.core.webcomponents.CustomFieldEditor {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <cue-text-area id="text-area" label="Example Text Area"></cue-text-area>
 `;
 }

 connectedCallback() {
 this.value = this.getValue();
 this.textAreaElement = this.shadowRoot.querySelector('#text-area');
 this.setElementValue();
 this.addValueChangeWatcher();
 }

 addValueChangeWatcher() {
 this.textAreaElement.addEventListener('valueChange', event => {
 this.value = event.detail;
 this.setValue(this.value);
 });
 }

 setElementValue() {
 if (this.value) {
 this.textAreaElement.setAttribute('value', this.value);
 }
 }
}
customElements.define('cue-element-text-area-editor', TextAreaWebComponent);

4.1.3.2 The CUE Checkbox Control

The cue-checkbox element displays a checkbox control with the standard CUE look and feel.

In addition, the control provides the following custom events:

4.1.3.2.1 cue-checkbox Attributes

A cue-checkbox element has the following attributes:

id (string)
The control's element ID.

Copyright © 2015-2023 Stibo DX A/S Page 141

CUE Tech Guide

label (string)
The control's label.

compact (boolean)
If set to true, changes the control layout to "compact" mode (currently, the padding-below is
removed).

compressed (boolean)
If set to true, changes the control layout to "compressed" mode (currently, no effect).

last (boolean)
If set to true, indicates that this is the last control in a component, activating any layout
adjustments required in that position.

read-only (boolean)
If true, makes the control read-only. The checkbox and label are grayed out.

info (string)
Can be used to display additional information about the purpose of the control. If set, the
information is currently displayed below the input field.

error (boolean)
An error message, currently displayed in red below the input field, after the info string.

web-component-events (string)
Can be used to make the control respond to other DOM events. The event names must be
specified as a comma-separated list, for example:

web-component-events="dblclick,contextmenu"

If you do this, then you must then also supply code to catch and handle the resulting events, in
the same way as you handle the control's default events (see section 4.1.3.2.2).

checked (boolean)
The checkbox value (true when checked).

4.1.3.2.2 cue-checkbox Events

By default, a cue-checkbox element responds to the following DOM events:

click
When the checkbox is clicked, a CustomEvent is sent to the listener.

valueChange
When the control's value changes, a CustomEvent containing the new value is sent to the
listener.

It can also respond to other events specified with the control's web-component-events
attribute (see section 4.1.3.2.1). It will respond to such events in exactly the same way, by sending a
CustomEvent to the listener.

4.1.3.2.3 cue-checkbox Example

The following minimal example shows how you can make use of the cue-checkbox control in your
web components. The example code only handles one of the control's events, valueChange. The same
basic technique can, however be used to handle the control's other default events, or any additional
events specified via the web-component-events attribute.

Copyright © 2015-2023 Stibo DX A/S Page 142

CUE Tech Guide

class CheckboxWebComponent extends cue.core.webcomponents.CustomFieldEditor {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <cue-checkbox id="checkbox" label="Example Checkbox"></cue-checkbox>
 `;
 }

 connectedCallback() {
 this.value = this.getValue();
 this.checkboxElement = this.shadowRoot.querySelector('#checkbox');
 this.setElementValue();
 this.addValueChangeWatcher();
 }

 addValueChangeWatcher() {
 this.checkboxElement.addEventListener('valueChange', event => {
 this.value = event.detail;
 this.setValue(this.value);
 });
 }

 setElementValue() {
 if (this.value) {
 this.checkboxElement.setAttribute('checked', this.value);
 }
 }
}
customElements.define('cue-element-checkbox-editor', CheckboxWebComponent);

4.1.3.3 The CUE Number Input Control

The cue-number-input element displays a numerical input field with the standard CUE look and
feel.

4.1.3.3.1 cue-number-input Attributes

A cue-number-input element has the following attributes:

id (string)
The control's element ID.

label (string)
The control's label

compact (boolean)
If set to true, changes the control layout to "compact" mode (currently, the label disappears).

compressed (boolean)
If set to true, changes the control layout to "compressed" mode (currently, reduces its size).

last (boolean)
If set to true, indicates that this is the last control in a component, activating any layout
adjustments required in that position.

read-only (boolean)
If true, makes the control read-only. Any value displayed in the input field is grayed out.

Copyright © 2015-2023 Stibo DX A/S Page 143

CUE Tech Guide

info (string)
Can be used to display additional information about the purpose of the control. If set, the
information is currently displayed below the input field.

error (boolean)
An error message, currently displayed in red below the input field, after the info string.

title-field (string)
If set to true, the control is presumed to represent a title field, and displayed accordingly
(highlighted in some way).

web-component-events (string)
Can be used to make the control respond to other DOM events. The event names must be
specified as a comma-separated list, for example:

web-component-events="dblclick,contextmenu"

If you do this, then you must then also supply code to catch and handle the resulting events, in
the same way as you handle the control's default events (see section 4.1.3.2.2).

value (string)
The value displayed in the control.

4.1.3.3.2 cue-number-input Events

By default, a cue-number-input element responds to the following DOM events:

focus
When the control acquires the focus, a CustomEvent is sent to the listener.

blur
When the control loses the focus, a CustomEvent is sent to the listener.

valueChange
When the control's value changes, a CustomEvent containing the new value is sent to the
listener.

It can also respond to other events specified with the control's web-component-events
attribute (see section 4.1.3.2.1). It will respond to such events in exactly the same way, by sending a
CustomEvent to the listener.

4.1.3.3.3 cue-number-input Example

The following minimal example shows how you can make use of the cue-number-input control in
your web components. The example code only handles one of the control's events, valueChange.
The same basic technique can, however be used to handle the control's other default events, or any
additional events specified via the web-component-events attribute.

class NumberInputWebComponent extends cue.core.webcomponents.CustomFieldEditor {
 constructor() {
 super();

 this.attachShadow({ mode: 'open' });
 this.shadowRoot.innerHTML = `
 <cue-number-input id="number" label="Example Number Input"></cue-number-input>
 `;
 }

Copyright © 2015-2023 Stibo DX A/S Page 144

CUE Tech Guide

 connectedCallback() {
 this.value = this.getValue();
 this.numberInputElement = this.shadowRoot.querySelector('#number');
 this.setElementValue();
 this.addValueChangeWatcher();
 }

 addValueChangeWatcher() {
 this.numberInputElement.addEventListener('valueChange', event => {
 this.value = event.detail;
 this.setValue(this.value);
 });
 }

 setElementValue() {
 if (this.value) {
 this.numberInputElement.setAttribute('value', this.value);
 }
 }
}
customElements.define(
 'cue-element-input-number-editor',
 NumberInputWebComponent
);

4.2 Enrichment Services
It is not feasible for CUE to meet every user's requirements out of the box – particularly when it comes
to integration with external systems. Such integrations are increasingly important as organizations
adapt their workflows to make use of popular online productivity tools, publish content to social media
and so on. When you publish a story in CUE, for example, you might also want to:

• Connect it to a Slack channel

• Create a card in Trello

• Push it to a Wordpress site

• Share it on one or more social media

• Send it to a legacy print system

CUE's enrichment services provide the means for you to satisfy such requirements for yourself, in a
surprisingly straightforward way.

An enrichment service is a simple HTTP service that has a defined workflow. When it receives a
request it recognizes from CUE, it responds in such a way as to guide CUE through the workflow,
providing CUE with explicit instructions on what it should do next. You can, for example, configure
CUE so that when the user clicks on Publish to publish a story, the story is not immediately
published, but instead sent to an enrichment service you have created. The enrichment service can
then perform some check on the story – count the related links, for example – and return a response
to CUE. In this case the response could either be an "OK, continue", allowing the story to be published,
or an instruction to display a message saying "please add 3 related links" and cancel the publish
operation.

Copyright © 2015-2023 Stibo DX A/S Page 145

CUE Tech Guide

It is also possible to define much more complex interactions though: you can instruct CUE to display
a sequence of dialogs for the user to fill in, and use the supplied data to modify the content of the
submitted story. You can also trigger enrichment services in different ways, not only when the
Publish button is pressed.

Here is an example workflow for publishing to social media that could be implemented using an
enrichment service:

1. The user selects Publish.

2. CUE displays a dialog containing:

• A Title text field (max 140 characters). It is pre-filled with either the story's title or the first
140 characters of its lead text field if available, but the user can edit it if required.

• A Social media drop-down field, containing the names of supported social media.

• Three buttons:

• Share: publishes the story and then shares it on the selected medium, using the specified
title.

• Don't share: publishes the story without sharing it.

• Cancel: cancels both operations – the story is neither published nor shared.

If the user selects Share, then the enrichment service will make an appropriate HTTP request to a
back-end server that will take care of sharing a link to the published story, using the specified Title.

Despite the fact that this additional functionality is implemented in an enrichment service completely
outside CUE, it appears to be fully integrated from the user's point of view: the dialog is constructed
and displayed by CUE and looks just like any other CUE dialog.

Enrichment services can be created to handle a number of different CUE structures, not only content
items. You can, for example, create enrichment services to handle section pages. Enrichment services
for the following items are, however, not supported at present:

• Lists

• CUE Live events

• CUE Print-related structures such as assignments and story folders

To create an enrichment service you need to:

• Configure CUE to access a service.

• Create the service. It must be an HTTP service that accepts specific kinds of requests from CUE,
and supplies specific kinds of response.

4.2.1 Configuring Enrichment Services in CUE

Configuring CUE to access an enrichment service is very straightforward – all you need to do is add a
few entries to the CUE configuration file, /etc/escenic/cue-web/config.yml. Open this file for
editing. If it does not already contain an enrichmentServices entry, then add one:

enrichmentServices:

Underneath this entry, you can add sub-entries for all the enrichment services you want to define. An
enrichment service configuration contains the following entries:

Copyright © 2015-2023 Stibo DX A/S Page 146

CUE Tech Guide

 - name: service-name
 href: http://host:port/service-url
 title: service-title
 contentTypes: content-type-filter
 mimeTypes: mime-type-filter
 publications: publication-filter
 triggers:
 - name: trigger-name

where:

name
Is the name of the enrichment service. The name must be unique since CUE identifies the
services by their name. Any service definition with a duplicate name will be ignored.

href
Is the URI of the enrichment service. CUE will POST the current content item to this URI as an
Atom entry.

title
Is the title of the enrichment service. This title is displayed by CUE in headers and labels as
appropriate.

contentTypes
Is an optional filter, specified as an array of content type names. For example:

contentTypes: ['story', 'storyline']

By default, an enrichment service is applied to all content types. If you specify a contentTypes
filter, however, then it is only applied to the specified content types.

mimeTypes
Is an optional filter, specified as an array of MIME type names. For example:

mimeTypes: ['x-ece/picture', 'x-ece/video', 'x-ece/gallery']

By default, an enrichment service is applied to all MIME types. If you specify a mimeTypes
filter, however, then it is only applied to the specified MIME types. The possible MIME types
that may be specified in the array are:

x-ece/story CUE story-type content item

x-ece/picture CUE image content item

x-ece/video CUE video content item

x-ece/gallery CUE gallery content item

x-ece/new-content New CUE content that has not yet been saved

x-ece/section CUE section

x-ece/section-page CUE section page

x-ece/* All kinds of CUE content

publications
Is an optional filter, specified as an array of publication names. For example:

Copyright © 2015-2023 Stibo DX A/S Page 147

CUE Tech Guide

publications: ['tomorrow-online', 'tomorrow-sport']

By default, an enrichment service is applied to content items irrespective of which publication
they belong to. If you specify a publication filter, however, then it is only applied to content
items from the specified publications.

triggers
Is a list of one or more triggers defining when CUE is to POST a content item to the enrichment
service.

A trigger may optionally have the same kinds of filters as can be specified for enrichment
services: contentTypes, mimeTypes and publications. They work in exactly the same way
as enrichment service filters, but apply only to the specific trigger. In addition, they override any
corresponding filters set at the enrichment service level. In the following case, for example:

 - name: "myservice"
 ...
 contentTypes: ["story", "storyline"]
 ...
 triggers:
 - name: trigger1
 - name: trigger2
 - name: trigger3
 contentTypes: ["story"]

myservice will be applied to both story and storyline content items when trigger1 and
trigger2 fire, but will only be applied to story content items when trigger3 fires.

Some triggers may have properties that need to be specified, in which case the service
configuration will also include a properties value consisting of a sequence of one or more
property settings.

Here is an example trigger definition with both a mimeTypes setting and a list of properties.

triggers:
 - name: trigger-name
 mimeTypes: [mimetype-list]
 properties:
 property-name: property-value
 property-name: property-value

See section 4.2.1.1 for further information.

4.2.1.1 Enrichment Service Triggers

CUE supports a number of different triggers that make it possible to call enrichment services at
different points in the editing/publishing process. There is also a timer-based trigger that will call an
enrichment service repeatedly at a specified interval. The triggers vary slightly according to the type of
enrichment service.

In addition to the specific triggers described in the following sections, all triggers may have a timeout
property. This is a timeout specified in seconds, for example:

 properties:
 timeout: 10

If a triggered environment service does not respond within the timeout period, then the request is
abandoned. A timeout failure of this kind is handled by CUE in the same way as an error response
from the service (see section 4.2.1.5).

Copyright © 2015-2023 Stibo DX A/S Page 148

CUE Tech Guide

4.2.1.1.1 Content Item Triggers

The available triggers for content item enrichment services are:

before-save
Before saving, when the user presses the Save button. No properties required.

after-save
After saving, when the user presses the Save button. No properties required.

before-save-state-state-name
Before saving, when the user changes the state to state-name. If CUE has an Escenic Content
Engine back end, then state-name can only be the name of one of the CUE default states
(draft, submitted, approved, published or deleted). If CUE has a CUE Content Store
back end, then state-name can either be one of these standard names or the name of a custom
state defined in a custom workflow (see Custom Workflow Definitions). No properties required.
Not supported for section page enrichment services.

after-save-state-state-name
After saving, when the user changes the state to state-name. If CUE has an Escenic Content
Engine back end, then state-name can only be the name of one of the CUE default states
(draft, submitted, approved, published or deleted). If CUE has a CUE Content Store
back end, then state-name can either be one of these standard names or the name of a custom
state defined in a custom workflow (see Custom Workflow Definitions). No properties required.
Not supported for section page enrichment services.

editor-opened
A specified number of seconds after the content item is opened for editing. You must specify the
number of seconds to wait as a property: delay: n.

editor-recurring
At specified intervals for as long as the content item is open for editing. You must specify the
length of the interval (in seconds) as a property: interval: n.

on-click
When the user clicks a button in the content item. No properties required. For more information
about this kind of trigger see the last example in section 4.2.1.3.

4.2.1.1.2 Section Page Triggers

The available triggers for section page enrichment services are:

before-save
Before saving/publishing, when either:

• The section page is in the published state and the user presses the Publish button.

• The section page is in the draft published state and the user presses the Save button.

after-save
After saving/publishing, when either:

• The section page is in the published state and the user presses the Publish button.

• The section page is in the draft published state and the user presses the Save button.

before-save-state-save
Before saving, when the section page is in the published state and the user presses the Save
button. No properties required.

Copyright © 2015-2023 Stibo DX A/S Page 149

http://docs.cuepublishing.com/ece-pub-design-guide/7.2/custom_workflow_definitions.html
http://docs.cuepublishing.com/ece-pub-design-guide/7.2/custom_workflow_definitions.html

CUE Tech Guide

after-save-state-save
After saving, when the section page is in the published state and the user presses the Save
button. No properties required.

before-save-state-publish
Before saving, when the section page is in the draft published state and the user presses the
Publish button. No properties required.

after-save-state-publish
After saving, when the section page is in the draft published state and the user presses the
Publish button. No properties required.

editor-opened
A specified number of seconds after the section page is opened for editing. You must specify the
number of seconds to wait as a property: delay: n.

editor-recurring
At specified intervals for as long as the section page is open for editing. You must specify the
length of the interval (in seconds) as a property: interval: n.

4.2.1.2 Enrichment Service Authentication

In order for an enrichment service to be able to make Content Store web service calls on behalf of
the user, it must be able to authenticate itself. You can make this possible by defining authorized
endpoints.

Any enrichment service deployed on an authorized endpoint (or on the same origin as CUE) is given
the user's credentials. This enables the enrichment service to make requests to the web service on
the user's behalf and thereby perform tasks such as publishing related content items or creating new
content items.

To define authorized endpoints, add an authorizedEndpoints entry to your config.yml file. This
entry can contain an array of authorized endpoint URLs (each preceded by a hyphen). For example:

authorizedEndpoints:
 - "http://my-enrichment-service.info:1234/"
 - "http://some-other-enrichment-service.info:1234/"

4.2.1.3 Configuration Examples

Here are a few example enrichment service configurations:

• Check that a content item has at least three tags before it is saved:

 - name: check-minimum-tag
 href: http://host:port/checkMinimumTag
 title: Minimum Tags
 triggers:
 - name: before-save

• Check that a content item has no unpublished relations before it is published:

 - name: check-unpublished-related-content
 href: http://host:port/checkUnpublishedContent
 title: Unpublished Related Content
 triggers:
 - name: before-save-state-published

Copyright © 2015-2023 Stibo DX A/S Page 150

CUE Tech Guide

• Check a content item's spelling at regular intervals:

 - name: check-spelling
 href: http://host:port/spellChecker
 title: Spell Checker
 triggers:
 - name: editor-recurring
 properties:
 interval: 20

• Print a content item:

 - name: print-article
 href: http://host:port/printArticle
 title: Print Article
 triggers:
 - name: on-click

In order for this configuration to work there must not only be an enrichment service to print
the content item at http://host:port/printArticle, the content item being edited must
also contain a Print button for the user to click. Such buttons must be defined in content type
definitions in the publication content-type resource. An enrichment service trigger button is
defined by a content item field element with a ui:editor child element. The ui:editor child
element must have a type attribute with the value enrichment-service and a name attribute
that matches the name of the CUE enrichment service. For example:

<field name="enrichmentbutton" type="basic" mime-type="text/plain">
 <ui:label>Print</ui:label>
 <ui:editor type="enrichment-service" name="print-article"/>
</field>

4.2.1.4 Enrichment Service Context Menu Entries

In some cases you may want users to be able to send a content item to an enrichment service by
selecting a menu entry. You can achieve this by adding menu entries to content item context menus.
A context menu can be displayed by right clicking on the content cards displayed in search results
and other lists of content item, or by clicking on the "hamburger" button displayed in the top right
corner of a content editor. To add an enrichment service to the context menus, you need to add a
configuration like this to /etc/escenic/cue-web/config.yml, as well as the main enrichment
service configuration:

extendedContextMenuItems:
 - name: "print-service"
 title: "Print"
 trigger: "on-print-menu-item-click"
 publication: "tomorrow-online"
 mimeTypes: ["x-ece/story"]

The extendedContextMenuItems property can contain any number of children, each defining
a menu entry for a different enrichment service. Each menu entry definition should consist of the
following properties:

name
A name for the menu entry definition.

title
The label to appear on the menu entry.

Copyright © 2015-2023 Stibo DX A/S Page 151

CUE Tech Guide

trigger
A trigger name for the menu item. The name(s) you specify here must also appear in the
enrichment service's list of triggers. If you have specified on-print-menu-item-click as
in the example shown above, then the same trigger name would need to appear in the print
enrichment service configuration:

 - name: print-article
 href: http://host:port/printArticle
 title: Print Article
 triggers:
 - name: on-click
 - name: on-print-menu-item-click

publication (optional)
The publication with which the menu entry is to be associated. The menu entry will only appear
in the context menu of content items that belong to the specified publication. If you omit this
property then the menu entry will appear in the context menu of content items belonging to any
publication.

mimeTypes (optional)
The MIME types with which the menu entry is to be associated. The menu entry will only appear
in the context menu of content items of the specified MIME types. If you omit this property then
the menu entry will appear in the context menu of content items of all MIME types.

contentTypes (optional)
The content types with which the menu entry is to be associated. The menu entry will only
appear in the context menu of content items of the specified types. If you omit this property then
the menu entry will appear in the context menu of content items of all types.

states (optional)
The states with which the menu entry is to be associated. The menu entry will only appear in the
context menu of content items in the specified states. If you omit this property then the menu
entry will appear in the context menu of content items in all types.

selection (optional)
This property must be set to one of the following values:

["single"] (default)
This menu entry is only displayed for single item selections.

["multi"]
This menu entry is only displayed for multiple item selections. You should only specify
this option if the target enrichment service has been designed to handle multiple content
items. For details see section 4.2.3.

["single","multi"]
This menu entry is displayed for both multiple and single item selections. You should only
specify this option if the target enrichment service has been designed to handle multiple
content items. For details see section 4.2.3.

It doesn't make sense to specify both a mimeTypes and a contentTypes property. If you do, then the
contentTypes property is ignored, and only the mimeTypes property is used.

4.2.1.5 Handling Enrichment Service Errors

An enrichment service may sometimes fail and return an HTTP 5xx response. An enrichment service
request may also time out, if the service fails to respond quickly enough (see the timeout description
in section 4.2.1). By default, either kind of failure stops the execution of the current workflow. If, for

Copyright © 2015-2023 Stibo DX A/S Page 152

CUE Tech Guide

example, the enrichment service was started by a content item before-save trigger, then the content
item in question will not be saved if the enrichment service fails or times out. This may not, however
always be what you want. If the task performed by the enrichment service is regarded as non-essential,
you may want the content item to be saved anyway.

To achieve this, set the enrichment service's stopOnFailure property to false. For example:

 - name: check-minimum-tag
 href: http://host:port/checkMinimumTag
 title: Minimum Tags
 stopOnFailure: false
 triggers:
 - name: before-save

If stopOnFailure is set to false in this way, then a failure will not interrupt the flow of events - the
content item will continue to be processed by any other configured enrichment services, and it will be
saved as requested. An info message reporting the failure will be sent to the CUE notification center,
but otherwise everything will proceed as normal.

If stopOnFailure is not specified, its default value is true.

If stopOnFailure is not specified or set to true, then by default failures are notified as followed:

Type of failure Error Message / Notification

Enrichment service not
reachable

A "service unreachable" error dialog is displayed

Enrichment service timed out A "service timed out" error dialog is displayed

HTTP 500 response The custom message included in the response object is used to display
an error dialog

Other HTTP 5xx responses A generic HTTP 5xx error message is displayed in an error dialog

You can, however, set notifyOnFailure to true, for example:

 - name: check-unpublished-related-content
 href: http://host:port/checkUnpublishedContent
 title: Unpublished Related Content
 stopOnFailure: true
 notifyOnFailure: true
 triggers:
 - name: before-save-state-published

If you do this, then the error messages displayed if the enrichment service is either unreachable or
times out are also sent to the CUE notification center. notifyOnfailure does not, however, have
this effect in the case of HTTP 5xx responses. HTTP 5xx messages are only displayed in dialogs,
irrespective of the notifyOnfailure setting

4.2.2 Creating an Enrichment Service

An enrichment service is a standard web service that accepts HTTP POST requests from CUE, and
responds with a specific subset of HTTP responses understood by CUE. You can create an enrichment

Copyright © 2015-2023 Stibo DX A/S Page 153

CUE Tech Guide

service using any web technology or platform you like so long as it conforms to CUE's enrichment
service protocol requirements.

When an enrichment service is triggered, CUE sends an HTTP POST request to the enrichment service
URL, with an Atom entry in the body of the request. The Atom entry will contain the content item
currently being edited in CUE, packaged as a VDF payload document. This is the same packaging that
is used to send content items to the Content Store web service - for details, see the Content Engine
Integration Guide.

The enrichment service can then examine the supplied content item, apply tests to it, modify it, modify
other content in the Content Store (via the Content Store's web service), make use of external web
services such as spelling or grammar checkers, publish the content item in external channels and so
on. It must, however, finally send one of the following HTTP responses back to CUE:

500 (Internal Server Error)
The enrichment service can give this response to indicate that an error of some kind has
occurred. Unless stopOnFailure has been set to false, CUE would then cancel the trigger
operation and either display an error dialog or notification containing the response message.
The response body can be one of the following types:

text/plain
A plain text response message to be displayed in an error dialog.

text/html
A formatted HTML response message to be displayed in an error dialog.

application/vnd.cue.notification+json
JSON data containing a notification to be sent to the CUE notification center. The JSON
data must have the following form:

{
 "title" : "Notification title",
 "body" : "Notification body"
}

400 (Bad Request)
The enrichment service can give this response to indicate that the POSTed content item
has failed some test or other, and the response can contain an explanatory message that is
displayed by CUE or sent to the notification center. A service that checks for unpublished
relations, for example, could send a 400 response if it found any unpublished relations. Unless
stopOnFailure has been set to false, CUE would then cancel the trigger operation (publish,
presumably) and either display an error dialog or notification containing the response message.
The response body can be one of the following types:

text/plain
A plain text response message to be displayed in an error dialog.

text/html
A formatted HTML response message to be displayed in an error dialog.

application/vnd.cue.notification+json
JSON data containing a notification to be sent to the CUE notification center. The JSON
data must have the following form:

{
 "title" : "Notification title",
 "body" : "Notification body"
}

Copyright © 2015-2023 Stibo DX A/S Page 154

http://docs.escenic.com/ece-integration-guide/7.18/
http://docs.escenic.com/ece-integration-guide/7.18/

CUE Tech Guide

204 (No Content)
The enrichment service can give this response to indicate that CUE should just carry on as
normal. A service that checks for unpublished relations, for example, could send a 204 response
if it did not find any unpublished relations: Unless stopOnFailure has been set to false,
CUE would then simply complete the publish operation that triggered the enrichment service
call, and take no further action.

200 (OK)
The enrichment service can give this response in a number of different circumstances. Exactly
what it means, and how it is used by CUE depends on the content returned in the body of the
response. This can be one of the following types:

text/plain
This response is functionally the same as a 204 (No Content) response from CUE's
point of view: the only difference is that CUE displays the text content of the response in
an information dialog. An enrichment service that automatically adds the content item to
an automatically selected list might, for example, return information about which list the
content item has been added to: "Item added to list 'urgent'".

text/html
This response is similar to a 200 response with text/plain content except that the
information dialog displayed by CUE will contain formatted HTML.

application/vnd.cue.notification+json
In this case, the response body is JSON data containing a notification to be sent to the
CUE notification center. The JSON data must have the following form:

{
 "title" : "Notification title",
 "body" : "Notification body"
}

application/atom+xml
The Atom entry is expected to contain a content item. How the content item is handled
depends on the entry's <link rel="self"/> element:

• If the link element contains the same self URL as the Atom entry originally POSTed
by CUE, then it is assumed to be a modified version of the POSTed content item
(returned, for example, from a grammar correction service). If the Atom entry contains
all the fields originally POSTed by CUE, CUE overwrites the current content item
with the returned version and then continues with the operation that triggered the
enrichment service call (saving or publishing, for example). If, on the other hand,
the Atom entry only contains some of the fields originally POSTed by CUE, then
CUE only updates these fields before continuing with the operation that triggered the
enrichment service call.

• If the link element contains a different self URL from the original Atom entry, then
CUE opens the referenced content item in a new editor and completes the operation
that triggered the enrichment service call (saving or publishing the original content
item, for example).

This type of response cannot be sent by a multi-select enrichment service (see section
4.2.3).

application/vnd.vizrt.payload+xml
This response is a VDF payload document (described in Content Engine Integration
Guide). It is expected to contain a sequence of field definitions. CUE constructs and

Copyright © 2015-2023 Stibo DX A/S Page 155

http://docs.escenic.com/ece-integration-guide/7.18/
http://docs.escenic.com/ece-integration-guide/7.18/

CUE Tech Guide

displays a dialog box containing the fields specified in the VDF document, plus an OK
and Cancel button. The expectation is that the user will fill in the form and click OK, or
else click Cancel.

If the user clicks OK, then the content of the filled form is submitted to the enrichment
service URL. The enrichment service can then process the content of the form and
respond again in any of the ways listed above. It could, for example, return a 204 (No
Content) response, or it could get CUE to display another dialog by returning another
200 (OK) response with a different application/vnd.vizrt.payload+xml. In
this way the enrichment service can, if necessary, force CUE to display a long sequence
of dialogs before finally performing some operation and terminating the operation that
initially triggered the enrichment service.

If the user clicks Cancel, then the operation that triggered the enrichment service is
cancelled.

4.2.3 Multi-select Enrichment Services

The ability to submit content items to an enrichment service by selecting a context menu entry opens
the possibility of submitting multiple content items in one go. You can enable this possibility by
specifying selection: ["multi"] or selection: ["single","multi"] when configuring a
context menu entry, as described in section 4.2.1.4. However, in order for this to work the enrichment
service must be able to handle multiple selections correctly. It must therefore differ from a single-
select enrichment service in the following ways:

• It must be designed to accept a text/uri-list holding the URIs of the selected content items
rather than an Atom entry holding the selected content item itself.

• If its purpose is to modify the selected content items, then it must do so by submitting GET and PUT
requests to the Content Store web service for each URI in the list. It cannot include the modified
content items in an HTTP 200 (OK) response (which is what a single-select enrichment service
does).

These are the only differences between a multi-select enrichment service and a single-select
enrichment service.

If your enrichment service needs to handle both single and multiple selections then you must design
it as a multi-select service that handles text/uri-lists rather than Atom entries, and add a
requestContentType property setting to the enrichment service's trigger configurations as follows:

 - name: print-article
 href: http://host:port/printArticle
 title: Print Article
 triggers:
 - name: on-click
 properties:
 requestContentType: text/uri-list
 - name: on-print-menu-item-click
 properties:
 requestContentType: text/uri-list

This property setting forces CUE to send a text/uri-list to the enrichment service rather than an
Atom entry even for single content items.

Copyright © 2015-2023 Stibo DX A/S Page 156

CUE Tech Guide

4.2.4 Some Examples

This provides a couple of examples of how enrichment services can be used:

• A "text analysis" enrichment service that makes use of the "update content" action triggered by an
application/atom+xml response.

• A "post to Slack" enrichment service that makes use of the dialog sequence triggered by an
application/vnd.vizrt.payload+xml response.

Both example descriptions assume that an Atom entry like this is POSTed to the enrichment service:

<entry xmlns="http://www.w3.org/2005/Atom"
 xmlns:app="http://www.w3.org/2007/app"
 xmlns:metadata="http://xmlns.escenic.com/2010/atom-metadata"
 xmlns:dcterms="http://purl.org/dc/terms/">
 <id>http://host-ip-address/webservice/escenic/content/43</id>
 <title type="text">Test</title>
 <app:edited>2010-06-23T09:09:50.654Z</app:edited>
 <dcterms:created>2010-06-22T10:22:20.000Z</dcterms:created>
 <author>
 <name>demo Administrator</name>
 <uri>http://host-ip-address/webservice/escenic/person/2</uri>
 </author>
 <dcterms:identifier>4</dcterms:identifier>
 <metadata:reference source="ece-auto-gen" sourceid="6d7203c9-27d5-4fce-b14a-
a466ead83875"/>
 <link rel="http://www.vizrt.com/types/relation/home-section"
 href="http://host-ip-address/webservice/escenic/section/4"
 title="New Articles"
 type="application/atom+xml; type=entry"/>
 <link href="http://wrk-ermo:12345/publication-id/incoming/article4.ece"
 rel="alternate"/>
 <link href="http://host-ip-address/webservice/escenic/lock/article/43"
 rel="http://www.vizrt.com/types/relation/lock"/>
 <link rel="http://www.vizrt.com/types/relation/publication"
 href="http://host-ip-address/webservice/escenic/publication/demo"
 title="demo"
 type="application/atom+xml; type=entry"/>
 <metadata:creator>
 <name>demo Administrator</name>
 </metadata:creator>
 <metadata:publication href="http://host-ip-address/webservice/escenic/publication/
demo">
 <link rel="http://www.vizrt.com/types/relation/home-section"
 href="http://host-ip-address/webservice/escenic/section/4"
 title="New Articles"
 type="application/atom+xml; type=entry"/>
 <link rel="http://www.vizrt.com/types/relation/section"
 href="http://host-ip-address/webservice/escenic/section/4"
 title="New Articles"
 type="application/atom+xml; type=entry"/>
 </metadata:publication>
 <link href="http://host-ip-address/webservice/escenic/content/43" rel="edit"/>
 <link href="http://host-ip-address/webservice/escenic/content/43" rel="self"/>
 <content type="application/vnd.vizrt.payload+xml">
 <vdf:payload xmlns:vdf="http://www.vizrt.com/types"
 model="http://host-ip-address/webservice/escenic/model/another">
 <vdf:field name="TITLE">
 <vdf:value>Test</vdf:value>

Copyright © 2015-2023 Stibo DX A/S Page 157

CUE Tech Guide

 </vdf:field>
 <vdf:field name="BODY">
 <vdf:value>
 <div xmlns="http://www.w3.org/1999/xhtml">
 <p>This is a test</p>
 </div>
 </vdf:value>
 </vdf:field>
 <vdf:field name="ANALYSIS"></vdf:field>
 </vdf:payload>
 </content>
</entry>

4.2.4.1 A "Text Analysis" Enrichment Service

This service sends the content of a story to an external text analysis service which returns some kind
of results (a list of keywords, for example). One way of handling this would be to include a hidden
"analysis" field in all the content types you want to be analyzed, to be used as a container for the
keywords. Your enrichment service could then forward the content of all the visible fields to the
analysis service, and add the keywords returned from the service to the hidden "analysis" field.

Here are the configuration settings for such a service:

enrichmentServices:
 - name: "Analyze text"
 href: http://my-web-service-host/analysis-service
 title: "Analyze text"
 triggers:
 - name: after-save-state-published
 properties: {}
 mimeTypes: ["x-ece/story"]

This configuration specifies that any "story-type" content items (content items that don't contain any
binary fields such as video or images, and aren't live events or Newsgate stories) will be posted to the
enrichment service at http://my-web-service-host/analysis-service when they are published.

When the enrichment service receives such a content item, it forwards the content from all the visible
fields to a text analysis service. When it gets the results back from the text analysis service, it sends
an HTTP 200 response back to CUE with an application/atom+xml body containing a copy of
the original Atom entry posted by CUE. The only part of the Atom entry that is modified is the VDF
payload. All the fields except the ANALYSIS field have been removed, and the ANALYSIS field now
contains the keywords returned from the text analysis service:

 <vdf:payload xmlns:vdf="http://www.vizrt.com/types"
 model="http://host-ip-address/webservice/escenic/model/another">
 <vdf:field name="ANALYSIS"></vdf:field>
 <vdf:value>sport,football,brazil</vdf:value>
 </vdf:field>
 </vdf:payload>

When CUE receives this response from the enrichment service, it overwrites the ANALYSIS field of
the content item with the value supplied by the enrichment service and publishes the content item. No
other fields are modified.

Copyright © 2015-2023 Stibo DX A/S Page 158

CUE Tech Guide

4.2.4.2 A "Post to Slack" Enrichment Service

This enrichment service posts a link to the Slack messaging service whenever a story is published.
Before it posts the link, however, it needs to prompt the CUE user to enter a short name for the story,
and the name of the Slack channel in which it is to be posted.

Here are the configuration settings for such a service:

enrichmentServices:
 - name: "Post to Slack"
 href: http://my-web-service-host/slack-service
 title: "Post to Slack"
 triggers:
 - name: after-save-state-published
 properties: {}
 mimeTypes: ["x-ece/story"]

This configuration specifies that any "story-type" content items (content items that don't contain any
binary fields such as video or images, and aren't live events or Newsgate stories) will be posted to the
enrichment service at http://my-web-service-host/slack-service when they are published.

When the Slack enrichment service receives such a content item, it returns an HTTP 200 response
with an application/vnd.vizrt.payload+xml body containing a VDF payload document. The
VDF document contains the prompts to be displayed in the dialog, for example:

<vdf:payload xmlns:vdf="http://www.vizrt.com/types" model=”http://web-service-host/
slack-channel-description.xml”>
 <vdf:field name=”slack-name”>
 <vdf:value>red-herring</vdf:value>
 </vdf:field>
 <vdf:field name=”channel”>
 <vdf:value>#sports</vdf:value>
 </vdf:field>
</vdf:payload>

Note the following about this document:

• The vdf:payload element's model attribute must contain the URI of a VDF model document
defining the structure of the payload. You must create this model document yourself and make it
available somewhere (most likely on the same host as the enrichment service itself).The VDF model
document for the example payload shown above might look like this:

<model xmlns:vdf="http://www.vizrt.com/types">
 <schema>
 <fielddef name="slack-name" label="Story name in Slack" xsdtype="string"/>
 <fielddef name="channel" label="Slack channel" xsdtype="string"/>
 </schema>
</model>

For a description of the VDF model document format, see here.

• The values in the fields are defaults. If you do not want to supply defaults to the fields in the form,
you can omit the values.

When CUE receives the payload document, it looks up the referenced model document and uses
the information to construct and display a dialog containing the specified fields. The user can then
enter the required values. When the user selects OK, CUE will POST the payload document (with any
changes made by the user) back to the enrichment service. The enrichment service can then post the

Copyright © 2015-2023 Stibo DX A/S Page 159

https://slack.com/
http://docs.escenic.com/ece-integration-guide/7.18/model.html

CUE Tech Guide

story to Slack and return HTTP 204 (No Content) to CUE, allowing CUE to complete the operation
that initiated the enrichment service call. Alternatively, the enrichment service could return HTTP 200
(OK) with a text/plain Content-Type header in order for CUE to display a message indicating that
the story has been posted to Slack. If the user selects Cancel instead of OK, then nothing is sent to the
enrichment service and CUE just carries on and completes the operation that initiated the enrichment
service call.

4.2.5 Learning More About Enrichment Services

If you want to learn more about CUE enrichment services, take a look at this series of articles on
http://blogs.escenic.com:

Diving into enrichment services

4.3 Drop Resolvers
A drop resolver is an HTTP service that reacts to objects dropped into CUE relation drop zones.
A drop resolver is invoked when an object that matches a specified MIME type or URL pattern is
dropped in a drop zone. The drop resolver is passed a drop context containing the information
needed to be able to upload content to the CUE Content Store or the CCI Newsgate back end. A drop
resolver can therefore be used to seamlessly import external objects dropped into CUE.

A typical use of a drop resolver would be to handle the import of images dragged into CUE from a
Digital Asset Management (DAM) system. When such an image is dropped into a story relation in
CUE, CUE checks the dropped image's MIME type or URI and calls the appropriate drop resolver. The
drop resolver then uploads the dropped image in the background to the appropriate back end, and
return the URI of the uploaded content to CUE. This allows CUE to continue with the drop operation
using the URL of the uploaded copy rather than the object that was originally dropped.

Drop resolvers can also be used to customize what happens when relations are created by dropping
existing content items into other content items' relation drop zones. You can use a drop resolver, for
example, to copy an image dragged from a foreign publication into the publication where it is being
dropped, so that the resulting dropped image is not cross-published.

4.3.1 Configuring Drop Resolvers in CUE

All you need to do make CUE call a drop resolver is add a few entries to the CUE configuration file,
/etc/escenic/cue-web/config.yml. Open this file for editing. If it does not already contain a
dropTriggers entry, then add one:

dropTriggers:

Underneath this entry, you can add sub-entries for all the drop resolvers you want to define. A drop
resolver configuration contains the following entries:

 - name: resolver-name
 href: http://host:port/service-url
 resultMimeType: mime-type
 attributes:
 custom-resolver-attribute
 ...
 triggers:

Copyright © 2015-2023 Stibo DX A/S Page 160

http://blogs.escenic.com
http://blogs.escenic.com/rd/2016/vbv7nd-Diving-into-enrichment-services.html

CUE Tech Guide

 trigger-specification

where:

name
Is the name of the resolver. The name must be unique since CUE identifies the resolvers by their
names. Any resolver definition with a duplicate name will be ignored.

href
Is the URI of the resolver service. The resolver service can run in a different domain from CUE,
but will then need to be specified as an authorized endpoint in order to be granted access to
CUE's endpoints (see section 4.2.1.2).

resultMimeType
Is a CUE MIME type, identifying the type of the content returned from the drop resolver.

attributes
Is an optional property that you can use to send custom parameters to the drop resolver. For
example:

 attributes:
 my-resolver-param-1: "value1"
 my-resolver-param-2: "value2"

In general, you can choose any names that you like for these attributes. There is, however,
one attribute name that you must avoid, since it is reserved by CUE. This reserved name is
serviceUri.In the situation where the MIME type of a dropped object is supported by more
than one content type in the publication, CUE can automatically display a dialog asking the user
to choose which content type to use for the dropped object. CUE then creates a serviceUri
attribute from the name of the selected content type (for example http://content-store-host/
webservice/publication/publication-name/binary/content-type-name) and adds it to
the object passed to the drop resolver. This content type selection dialog is only displayed if CUE
is configured to display it (see section 2.2.5).

triggers
A specification of the conditions that will trigger CUE to send a dropped object to the drop
resolver. The specification can either consist of an array of MIME types or an array of URI
patterns (but not both). For example:

 triggers:
 mimeTypes: [mime-type,...]

or:

 triggers:
 urlPatterns: [url-pattern,...]

If mimeTypes is specified, then the drop resolver will be called whenever an object with a
MIME type that matches one of the specified MIME types is dropped into CUE.

If urlPatterns is specified, then the drop resolver will be called whenever an object with a
URL that matches one of the specified URL patterns is dropped into CUE.

Here is an example configuration for a Google image import drop resolver:

dropTriggers:
 - name: "GoogleImageImport"
 href: "http://my-server/GoogleImageImport"
 resultMimeType: "x-ece/picture"

Copyright © 2015-2023 Stibo DX A/S Page 161

CUE Tech Guide

 triggers:
 urlPatterns: ['^https?:\/\/www\.google\..*\/imgres\?.*']

This configuration will cause CUE to forward any dropped object with a URL that matches the regular
expression ^https?:\/\/www\.google\..*\/imgres\?.* to the drop resolver http://my-
server/GoogleImageImport.

4.3.2 Drop Resolver Parameters

When CUE triggers a drop resolver, it passes an object to the resolver containing the following
parameters:

uri
The URI of the dropped object.

endpoints
CUE's configured endpoints (one or more of Content Store, CCI Newsgate and the bridge).

attributes
Any parameters supplied in the attributes object of the drop resolver configuration (see
section 4.3.1).

accessTokens
Access tokens that can be used to authenticate any requests the drop resolver sends to CUE's
endpoints. These access tokens will only be passed to the drop resolver if it:

• Either belongs to the same domain as CUE

• Or is listed as an authorized endpoint (see section 4.3.1).

context
The context of the drop operation. For an CUE publication, this consists of the following
structure:

publication:
 name: publication-name
 uri: publication-uri

where:

• publication-name is the name of the CUE publication in which the drop operation occurred.

• publication-uri is the URI of the CUE publication in which the drop operation occurred.

For a Newsgate publication, the context is:

storyId: story-folder-id

where story-folder-id is the ID of the story folder in which the drop operation occurred.

4.3.3 Drop Resolver Return Values

A drop resolver must return one of the following HTTP responses on termination:

HTTP 200 (OK)
The drop resolver has terminated successfully. The body of the HTTP response must contain
the URI of a resource in the Content Store or CCI Newsgate back end (usually this will be an
imported version of the object that was dropped by the user). CUE will then complete the drop
operation using the supplied URI.

Copyright © 2015-2023 Stibo DX A/S Page 162

CUE Tech Guide

HTTP 204 (No Content)
The drop resolver has terminated successfully, but does not have a URI to return. CUE will then:

• If the dropped object was external, abandon the drop operation.

• If the dropped object was an CUE content item, complete the drop operation with the
original content item.

HTTP 4xx or 5xx
An error of some kind has occurred. The body of the HTTP response must contain an error
message text. CUE will then abandon the drop operation and display the supplied error message
in a dialog box.

4.4 URL-based Content Creation
CUE lets you create a draft content item by simply passing a URL to a browser. A script running
in some other application such as Trello, Google Sheets or Slack can simply construct a CUE URL
containing the details of a new content item and pass the URL to a browser. CUE will then start in the
browser and create the requested content item, ready for the user to continue editing (if required), save
and publish.

If the user is currently logged in to CUE then the new content item is created immediately. If the user
is not logged in, then the CUE login screen is displayed in the browser. Once the user has logged in, the
content item is created.

4.4.1 Content Creation URL Structure

A content creation URL must have the following overall structure:

https://your-cue-host/cue-web/#/main?parameter-list"

where your-cue-host is the host name (and possibly the port number) of your CUE host and
parameter-list is a sequence of three URL parameters separated by & characters:

uri=source-id&mimetype=mime-type&extra=content-definition

These parameters must contain the following values:

uri=source-id
A source ID is a unique string used to identify a content item. The section 4.4.2 generates an ID
from the current date and time, but you can use whatever method you choose to supply a unique
string.

mimetype=mime-type
You must specify the MIME type x-ece/new-content; type=story.

extra=content-definition
content-definition is a JSON value defining the content you want to create. The structure of the
JSON data depends on whether you want to create a storyline container (section 4.4.1.1) or a
classic XHTML-based story (section 4.4.1.2).

Note that all the field names and values in the JSON structure must be enclosed in quotes,
otherwise the URL will not be accepted by CUE.

Copyright © 2015-2023 Stibo DX A/S Page 163

CUE Tech Guide

The values of the three URL parameters must all be URL-encoded.

4.4.1.1 Defining a Storyline Container

To create a storyline container, your extra parameter JSON data must be structured as follows:

{
 "container": true,
 "containerSlug": "container-slug",
 "homePublication": "publication-name",
 "modelURI": {
 "$class": "URI",
 "string": "model-uri"
 },
 "storyElements": story-elements,
 "tags": tag-references
}

where:

container-slug
Is an optional slug for the container. If you do not want to supply a slug, then omit the entire
containerSlug field.

publication-name
Is the name of the publication in which the container is to be created.

model-uri
Is the web service URI of the content model for the storyline type you want to create.

story-elements
Is an array of field definitions defining the content you want to insert into the new storyline, for
example:

"storyElements":[
 {
 "storyElement":"headline",
 "value":"Example Headline"
 },
 {
 "storyElement":"lead_text",
 "value":"Example lead text"
 },
 {
 "storyElement":"paragraph",
 "value":"Example para"
 },
 {
 "storyElement":"interview",
 "elements":[
 {
 "storyElement":"interview_question",
 "value":"Example question"
 }
]
 }
]

The field definitions in the array must:

Copyright © 2015-2023 Stibo DX A/S Page 164

https://www.w3schools.com/tags/ref_urlencode.asp

CUE Tech Guide

• Comply with the content model referenced in the modelURI field.

• Be either plain text story elements such as headline and paragraph, or complex story
elements such as interview (that must also only contain plain text story elements).
Graphic / video story elements are not supported.

tag-references
Is an optional array of tag references to be added to the story (see section 4.4.1.3 for details). If
you do not want to tag the story, then omit the entire tags field.

4.4.1.2 Defining a Classic Story

To create a classic XHTML-based story, your extra parameter JSON data must be structured as
follows:

{
 "modelURI": {
 "string": "model-uri",
 "$class":"URI"
 },
 "homeSectionUri":"home-section-uri",
 "values": content-item-field-values,
 "tags": tag-references
}

where:

model-uri
Is the web service URI of the content model for the content item you want to create.

home-section-uri
Is the web service URI of the section to which you want to add the new content item.

values
Is an object containing a series of field values defining the content you want to add to the new
content item. You can leave this object empty if you don't want any of the fields in the new
content item to be predefined, for example:

"values": {}

The fields must be identified by their names as specified in the CUE content-type resource,
not by the labels displayed in CUE. To predefine values for the title and body fields of a
content item, you would need to specify:

"values": {
 "title": "This is the title",
 "body": "<p>This is the body.</p>"
}

tag-references
Is an optional array of tag references to be added to the story (see section 4.4.1.3 for details). If
you do not want to tag the story, then omit the entire tags field.

4.4.1.3 Tagging the Story

You can add tags to both storylines and classic stories by including a tags containing an array of tag
references like this:

Copyright © 2015-2023 Stibo DX A/S Page 165

CUE Tech Guide

"tags": [
 {
 "$class": "URI",
 "string": "https://host/webservice/escenic/classification/tag/
tag:entity@escenic.com,2017:iPad"
 },
 {
 "$class": "URI",
 "string": "https://host/webservice/escenic/classification/tag/
tag:location@escenic.com,2017:home"
 }
]

The tag references must be URLs referencing tags that are already defined in the Content Store - it is
not possible to create new tags.

4.4.2 Example Script

The following example bash script shows how to construct a content creation URL and submit it to
CUE. It creates a storyline container with tags.

#!/bin/bash
urlencode() {
 # urlencode <string>
 old_lc_collate=$LC_COLLATE
 LC_COLLATE=C
 local length="${#1}"
 for ((i = 0; i < length; i++)); do
 local c="${1:i:1}"
 case $c in
 [a-zA-Z0-9.~_-]) printf "$c" ;;
 *) printf '%%%02X' "'$c" ;;
 esac
 done
 LC_COLLATE=$old_lc_collate
}
cue="https://your-cue-host/cue-web"
webservice="https://your-escenic-webservice-host/webservice"
homepublication="publication-name"
homesection="$webservice/escenic/section/section-id"
modeluri="$webservice/escenic/shared/model/container/regular-news-story"
mimetype="x-ece/new-content; type=story"
sourceid=`date '+%y%m%d-%H%M%S'`
container=true
containerslug="test container slug"

storyElements="[{\"storyElement\":\"headline\",\"value\":\"example plain text\"},
 {\"storyElement\":\"image\",\"value\":\"example plain text\"} ,{\"storyElement
\":\"paragraph\",\"value\":\"example plain text\"},{\"storyElement\":\"paragraph\",
\"value\":\"example plain text\"}, {\"storyElement\":\"interview\",\"elements\":
[{\"storyElement\":\"interview_question\",\"value\":\"example plain text\"}]}]"

tags="[{\"\$class\": \"URI\", \"string\": \"https://host/webservice/escenic/
classification/tag/tag:entity@escenic.com,2017:iPad\"}, {\"\$class\":
 \"URI\", \"string\": \"https://host/webservice/escenic/classification/tag/
tag:nationality@escenic.com,2017:German\"}]"

Copyright © 2015-2023 Stibo DX A/S Page 166

CUE Tech Guide

extra="{\"modelURI\":{\"string\":\"${modeluri}\",\"\$class\":\"URI\"},
\"homePublication\":\"${homepublication}\", \"container\":${container},
 \"storyElements\": ${storyElements}, \"containerSlug\":\"${containerslug}\", \"tags
\": ${tags}}"

url=$cue/#/main?uri=$(urlencode "$sourceid")\&mimetype=$(urlencode
 "$mimetype")\&extra=$(urlencode "$extra")

google-chrome $url &

If you edit this script to match your installation, then running it should start the Chrome browser and
create a draft content item. You would need to replace your-cue-host and your-escenic-webservice-
host with the correct host names, replace homepublication with the name of one of your publications,
and replace section-id with the ID of a section in that publication before running it. Otherwise, as
long as you have a content type called regular-new-story, with a suitable content model, it should
work.

4.5 URL-based Content Editing
CUE lets you open a content item by simply passing a URL to a browser. A script running in some
other application such as Trello, Google Sheets or Slack can simply construct a CUE URL containing
ID of an existing content item and pass the URL to a browser. CUE will then start in the browser and
open the requested content item, ready for the user to continue editing (if required), save and publish.

If the user is currently logged in to CUE then the new content item is opened immediately. If the user
is not logged in, then the CUE login screen is displayed in the browser. Once the user has logged in, the
content item is opened.

4.5.1 Content Editing URL Structure

A content editing URL must have the following overall structure:

http://your-cue-host/cue-web/#/main?escenicid=content-item

where:

• your-cue-host is the host name (and possibly the port number) of your CUE host

• content-item is the ID of the content item to be edited. The ID can be supplied in the following
three forms:

• Just the ID itself. For example:

http://mycueserver.com:81/cue-web/#/main?escenicid=1234

• As a Content Store web service URL, specified relative to the CUE installation's escenic end
point:

http://mycueserver.com:81/cue-web/#/main?escenicid=escenic/content/1234

• As a complete Content Store web service URL:

http://mycueserver.com:81/cue-web/#/main?escenicid=http://
mycontentstore.com:8080/webservice/escenic/content/1234

Copyright © 2015-2023 Stibo DX A/S Page 167

CUE Tech Guide

4.6 Logout Triggers
A logout trigger is a simple HTTP GET request that is sent to a specified URL when the user logs out
from CUE. It provides a mechanism for integrators to automatically perform other actions (such as
logging out of a VPN) on logout from CUE. You can define multiple logout triggers. In this case, a GET
request will be sent to each specified URL when the user logs out.

The CUE logout process does not wait for any response from the defined trigger URLs – it simply
makes the requests and then performs the logout operation.

To define logout triggers:

1. If necessary, switch user to root.

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example:

nano /etc/escenic/cue-web/config.yml

3. Add a logoutTriggers property containing a list of trigger URLs to which GET requests are to
be sent:

logoutTriggers:
 - http://my-vpn-service/logout
 - http://my-other-service/logout

4. Save the file.

5. Enter:

dpkg-reconfigure cue-web-3.18

This reconfigures CUE with the changes you have made.

4.7 CUE Safe Mode
CUE safe mode lets you easily disable some or all extensions of you have installed to help you track
down the cause of any problems that may arise.

To disable all web components, enrichment services and drop resolvers you have installed:

1. Open the Settings panel by selecting the panel button (on the left).

2. Double-click System Settings and Information to display the System Settings page.

Copyright © 2015-2023 Stibo DX A/S Page 168

CUE Tech Guide

3. Check the Enable safe mode option at the top of the page:

4. Select Apply Changes.

5. Refresh any open CUE browser tabs to see the effects of the change.

All extensions are now disabled. You can re-enable extensions individually or in groups by selecting
the individual check boxes on the rest of the page, selecting Apply Changes and once again
refreshing any open CUE browser tabs. By enabling and disabling extensions and then testing you can
often determine whether or not an extension is the cause of your problem and if so, which one.

4.8 Custom Capabilities (Content Store only)
A CUE capability is a unit of CUE functionality that can be enabled or disabled for individual users.
This makes it possible for different users to see different versions of CUE, customized to match their
role. A house journalist, for example, may be granted access to different functionality from an editor
or a freelance journalist. All the standard side panels and metadata panels in CUE are defined as
capabilities and can therefore be either hidden or shown based on a user's role.

If you have extended CUE with your own web components, then you can also define custom
capabilities that will allow them to be enabled and disabled in the same way as the built-in
functionality. A custom capability in CUE is simply a name that you assign to a web component
by setting a property in its configuration file. Here, for example, is a side panel web component
configuration that includes a capability definition:

sidePanels:
 - id: "twitter-home-panel"
 name: "Twitter Timelines"
 directive: "cue-custom-panel-loader"
 isAngular: true
 webComponent:
 modulePath: "webcomponents/twitter/twitter-home-panel.js"
 icon: "twitter-home-panel-icon"
 mimeTypes: []
 homeScreen: true

Copyright © 2015-2023 Stibo DX A/S Page 169

CUE Tech Guide

 metadata: []
 active: false
 order: 705
 capability: "twitter-panel"

Here is a metadata panel web component configuration with a capability definition:

 editors:
 metadata:
 - name: "storyline-stat"
 directive: "storyline-stat"
 cssClass: "storyline-stat"
 title: "Storyline Stat" #translate
 webComponent:
 modulePath: "webcomponents/storyline/storyline-stat.js"
 icon: "storyline-stat-icon"
 mimeTypes: ["x-ece/story", "x-ece/new-content; type=story"]
 order: 731
 capability: "storyline-stat"

You can add a capability property like this to any side panel or metadata panel configuration (but
not to a custom field editor configuration). Your capability name must not clash with any of the built-
in capability names. All the built-in capabilities have names that start with cue-, so just avoid this
prefix in your names. If you have a group of extensions that are so closely related that they can be seen
as a single piece of functionality, then you can give them all the same capability name: it will then be
possible to enable/disable them as a group.

The management of user access to CUE capabilities is a Content Store responsibility, so once you have
defined your custom capabilities in CUE, you will need to add some corresponding configurations
to the Content Store and then grant selected users access to the capabilities using Web Studio. For
information about how to do these things, see Capability Definitions and Capabilities.

Copyright © 2015-2023 Stibo DX A/S Page 170

http://docs.cuepublishing.com/ece-pub-design-guide/7.18/capability_definitions.html
http://docs.cuepublishing.com/ece-pub-admin-guide/7.18/capabilities.html

CUE Tech Guide

5 DC-X Integration

This section provides a preliminary description of the DC-X extension for CUE. DC-X is a Digital Asset
Management system offering simple but sophisticated functionality for the creation, management and
storage of digital assets such as text, images, video and audio.

The main components of the CUE DC-X extension are:

• A DC-X side panel in CUE that allows users to search DC-X for images, videos and so on, for import
into CUE.

• A related drop resolver (an HTTP service that reacts to objects dropped into CUE). This drop
resolver listens for drops of DC-X resources, dragged either from the DC-X side panel or from a DC-
X client running on the same device as CUE. On detecting such an event, the drop resolver imports
the dropped resource(s) into CUE. For general information about drop resolvers, see section 4.3.

• A DC-X Wires side panel in CUE that allows users to browse and search for wire stories in DC-X,
and import selected wire stories for use in CUE.

The extension includes three features that depend on the use of the CUE Zipline extension. These are:

• Reporting back to DC-X on the use of DC-X assets in CUE

• Copying back to DC-X assets that are uploaded to CUE

• Import of wire stories from DC-X

5.1 DC-X Drop Resolver Installation
The DC-X extension requires the installation of the DC-X drop resolver. Currently this component is
not available for download via the usual channels. Contact Stibo DX through your sales or support
representative to obtain a copy of the DC-X drop resolver and instructions on how to install it.

5.2 DC-X Extension Configuration
These instructions are based on the assumption that the DCX drop trigger has been installed and is
accessible from CUE.

1. Switch user to root (if necessary)

$ sudo su

2. Open /etc/escenic/cue-web/config.yml for editing. For example

nano /etc/escenic/cue-web/config.yml

3. Edit the file as described in the following sections.

4. Save the file.

5. Enter the following to reconfigure CUE:

dpkg-reconfigure cue-web-3.18

Copyright © 2015-2023 Stibo DX A/S Page 171

CUE Tech Guide

5.2.1 Endpoint Configuration

The DC-X system with which CUE is to communicate must be configured as an endpoint, in the same
way as the Content Store and CUE Print back ends. Add the URI of the DC-X endpoint as a new
property under endpoints. For example:

endpoints:
 escenic: "http://escenic-host:81/webservice/index.xml"
 newsgate: "http://newsgate-host/newsgate-cf/"
 dc-x: "http://dcx-host/dcx/"

5.2.2 Side Panel Configuration

Add endpointServices, sidePanels and useDCXWirePanel configurations, which should look
something like this:

endpointServices:
 dc-x:
 - serviceName: "dcx-login.service"

sidePanels:
 - id: "dcx-assets"
 isAngular: true
 name: "DC-X Assets" #translate
 cssClass: "dcx dcx-assets"
 directive: "dam-datasource"
 mimeTypes: ['x-ece/story', 'x-ece/container', 'x-ece/new-content; type=story', 'x-
ece/event', 'x-ece/gallery',]
 homeScreen: false
 active: true
 requires: ["dc-x"]
 order: 302
 attributes:
 dcxChannels: ['ch020dcxsystempoolapict', 'ch060dcxsystempoolvideo',
 'ch050dcxsystempoolnative']

 - id: 'dcx-wires'
 name: 'DC-X Wires' #translate
 directive: 'dam-datasource'
 homeScreen: true
 order: 301
 attributes:
 dcxChannels: ['channel_pool_story']
 updateInterval: 30

useDCXWirePanel: true

The DC-X Wire panel configuration is optional. If you do not intend to make use of DC-X wires
from CUE, then you can omit the dcx-wires side panel configuration and the useDCXWirePanel
property (or set useDCXWirePanel to false).

There is an example configuration file called DCX.yml included in the CUE distribution that you can
copy and uncomment.

Make sure that the dcxChannels property is correctly set. This property must contain a list of the
DC-X channels that CUE should have access to. You must use the channel IDs to specify the channels,
not their names.

Copyright © 2015-2023 Stibo DX A/S Page 172

CUE Tech Guide

You can use the updateInterval property to specify how frequently the DC-X Wire panel is to be
updated. The interval is specified in seconds.

5.2.3 Drop Resolver Configuration

Add a drop resolver (or drop trigger) configuration, which should look something like this:

dropTriggers:
 - name: DCXToContentStoreImport
 href: "http://drop-resolver-host/DCXToContentStoreImport"
 triggers:
 mimeTypes: ['x-dcx/image', 'x-dcx/postscript', 'x-dcx/illustrator', 'x-dcx/pdf',
 'x-dcx/video']
 urlPatterns: ['^https?:\/\/dcx-host\/dcx\/api\/document\/.*', '^https?:\/\/dcx-
host\/dcc\/document\/.*']
 resultMimeType:
 - sources: ['x-dcx/image', 'x-dcx/postscript', 'x-dcx/illustrator', 'x-dcx/
pdf']
 results: ["x-ece/picture"]
 - sources: ["x-dcx/video"]
 results: ["x-ece/video"]
 - sources: ['^https?:\/\/dcx-host\/dcx\/api\/document\/.*', '^https?:\/\/dcx-
host\/dcc\/document\/.*']
 results: ["x-ece/picture", "x-ece/video"]
 attributes:
 defaultState:
 - dcxTypes: ["image", "postscript", "illustrator", "pdf", "video"]
 state: "published"
 fieldMapping:
 - dcxTypes: ["image", "postscript", "illustrator", "pdf"]
 mapping:
 - name: "title"
 value:
 - dcxField: "Filename"
 - name: "caption"
 value:
 - dcxField: "body"
 - dcxField: "Headline"
 - name: "credit"
 value:
 - dcxField: "Provider"
 - name: "byline"
 value:
 - dcxField: "Creator"
 - dcxTypes: ['video']
 mapping:
 - name: "title"
 value:
 - dcxField: "Filename"
 - name: "description"
 value:
 - dcxField: "body"
 - dcxField: "Headline"
 - name: "credit"
 value:
 - dcxField: "Provider"
 - name: "byline"
 value:
 - dcxField: "Creator"

Copyright © 2015-2023 Stibo DX A/S Page 173

CUE Tech Guide

where drop-resolver-host and dcx-host are replaced by the appropriate host names.

The defaultState attribute determines which states will be assigned to dropped assets. You can
differentiate the dropped assets by their DC-X type and assign different states to different types of
asset. In the example shown above, all types of asset are assigned the state published.

The fieldMapping defines how DC-X field values are to be mapped on to Content Store fields. You
can differentiate the dropped assets by their DC-X type and set different field mappings for different
types of asset. In the example shown above, video assets are assigned different field mappings from the
other asset types. You can map several DC-X fields onto one Content Store field:

 - name: "description"
 value:
 - dcxField: "body"
 - dcxField: "Headline"

In this case the DC-X fields must be specified in priority order: the first non-empty field is used to fill
the Content Store field.

5.2.4 Content Type Configuration

In order to support the automatic upload of assets from the Content Store to DC-X, a special field must
be added to the definition of all relevant content types (i.e, graphics and video content types). This
field is used to hold DC-X status information about the content items / assets. The field can have any
name, but it must satisfy the following requirements:

• Be a basic field with the MIME type application/json

• Be read-only

• Be identified as a DC-X status field with a ui:dam-status child element

It should also ideally be hidden. Here is an example of a suitable field definition:

<field name="_dam_status" type="basic" mime-type="application/json">
 <ui:hidden/>
 <ui:read-only/>
 <ui:dam-status/>
</field>

5.2.5 Zipline Configuration

CUE Zipline is a CUE extension that was originally designed to support CUE Print integration, but is
now also used to support DC-X integration. For general information about CUE Zipline and how to
configure it, see here.

CUE Zipline supports data transfer between DC-X and CUE. Specifically, it enables the transfer of:

• Reports on the use of DC-X assets in CUE

• Assets uploaded to CUE

• Wire stories from DC-X to CUE

To make CUE Zipline support basic DC-X integration (excluding the import of wire stories), add a DC-
X processor definition to the processors entry in the CUE Zipline configuration file:

Copyright © 2015-2023 Stibo DX A/S Page 174

http://docs.cuepublishing.com/zipline-doc-user-guide/1.9/

CUE Tech Guide

processors:
 ...
 # Reporting usage information for DC assets
 - type: dcx
 endpoint:
 # URL of DCX API endpoint
 url: dcx-integration-endpoint
 user: dcx-integration-user
 password: dcx-integration-password
 cache:
 # Override default cache capacity (10000)
 max_size: dcx-integration-cachesize

 # Base URL of CUE web installation (e.g., http://server:port/cue-web/)
 cue_web: cue-web-endpoint

 # Configuration of usage info block
 info:
 view:
 label: View
 link_text: Browse
 edit:
 label: Edit
 link_text: Open in CUE
 upload:
 upload-configuration

The DC-X processor definition contains the following properties:

type
Must be set to dcx.

endpoint
Must contain properties specifying the DC-X endpoint URL plus a valid DC-X user name and
password.

cache
May optionally be used to specify cache settings.

cue_web
Must contain the CUE endpoint URL.

upload
May optionally be used to define what kinds of uploaded assets should be copied back to DC-X,
and how they should be handled by DC-X. For details see section 5.2.5.1.

5.2.5.1 Upload Configuration

processors:
 ...
 - type: dcx
 ...
 upload:
 - filter:
 publications:
 - tomorrow-online
 content-types:
 - picture
 - graphic
 states:

Copyright © 2015-2023 Stibo DX A/S Page 175

CUE Tech Guide

 - approved
 - published
 content:
 tags:
 - name: Creator
 meta: creator
 folder: native

The upload property controls the upload of assets from the Content Store to DC-X. It can contain a
list of upload specifications, each of which consists of the following three properties:

filter
This property contains a set of criteria that determine which of the assets uploaded to the
Content Store should be copied to DC-X. The criteria are:

publications
A list of publication names. Only assets uploaded to these publications will be copied to
DC-X.

content-types
A list of content type names. Only these content types will be copied to DC-X.

states
A list of workflow state names. Only content items in one of these states will be copied to
DC-X

content
This property contains a tags property that defines the mapping between content item fields
and DC-X tags. For details, see section 5.2.5.2.

folder
This property specifies the DC-X upload folder to use.

5.2.5.2 Tag Mapping

The tag mappings specified in a tags property consist of:

• A name property identifying a DC-X tag

• A second property specifying how the DC-X tag is to be set

The following variations are possible:

• - name: Creator
 field: byline

Assign the value of the uploaded content item's byline field to the DC-X Creator tag.

• - name: Creator
 meta: creator

Assign the value of the uploaded content item's creator metadata field to the DC-X Creator tag.

• - name: Creator
 first-of:
 - field: byline
 - meta: author

Copyright © 2015-2023 Stibo DX A/S Page 176

CUE Tech Guide

 - meta: creator

Read the fields listed under first-of in the specified order. Use the first one that contains a value
to set the DC-X Creator tag.

• - name: body
 template: >
 <p>{{caption}}</p>
 context:
 - name: caption
 field: caption

Use the result of executing the specified Jinja2 template to set the DC-X body tag. The context
property can be used to define the variables that will be available to the template. These variables
can be assigned values in exactly the same way as values are assigned to DC-X tags. So in this
example, the {{caption}} variable will be replaced with the content of the uploaded content
item's caption field.

5.2.5.3 Wire Stories Configuration

In order for CUE Zipline to support the import of wire stories from DC-X, you need to add a dcx-
converters top-level section like this to the CUE Zipline configuration file:

dcx-converters:
 # Configuration to convert DC-X wire story to CUE storyline in a container
 wire:
 # Relative path where templates for DC-X wire live
 # template-dir: /etc/cue/zipline/conversion-templates
 target:
 publications:
 - text: Tomorrow Online # Text to show in a label
 value: tomorrow-online # Name of the publication
 containers:
 - text: Regular News Story
 value: regular-news-story
 # Map between CUE container fields and DC-X document fields
 fields:
 - name: Headline
 meta: com.escenic.container.slug
 content-types:
 - text: Storyline
 value: storyline
 # Map between CUE content type fields and DC-X document fields
 fields:
 - name: Title
 meta: title
 # Map between CUE story element type fields and DC-X document fields
 story-elements:
 - value: headline # Name of the story element type
 fields:
 - name: Headline
 meta: headline
 - value: lead_text
 fields:
 - name: SubHeadline
 meta: lead-text
 extract-substrings: False # Attribute used to separate out a DC-X
 XHTML field value
 - value: paragraph

Copyright © 2015-2023 Stibo DX A/S Page 177

https://palletsprojects.com/p/jinja/

CUE Tech Guide

 fields:
 - name: body
 meta: paragraph
 extract-substrings: True
 binary-content-types:
 - text: Picture
 value: picture
 # Map between CUE binary content type fields and DC-X image fields
 fields:
 - name: ImageCaption
 meta: caption
 - name: _display_title
 meta: title
 summary-fields: # Binary content type summary fields
 - name: ImageCaption
 meta: caption
 - text: Binary
 value: binary
 fields:
 - name: _display_title
 meta: title
 summary-fields:
 - name: _display_title
 meta: title
 - text: Graphics
 value: graphics
 fields:
 - name: ImageCaption
 meta: caption
 - name: _display_title
 meta: title
 summary-fields:
 - name: ImageCaption
 meta: caption
 # Map between DC-X text formatters and CUE storyline annotations
 annotations:
 - name: bold # Name of the css class that DC-X uses to format a text in story
 meta: bold # Name of the annotation that CUE uses to annotate a text in
 storyline
 - name: italic
 meta: italic
 - name: underline
 meta: underline

The overall purpose of this section is to define:

• Which CUE publications DC-X wire stories may be imported to

• Which containers DC-X wire stories may be imported to

• Mappings between DC-X fields and the fields / story elements in CUE containers and content types

• Mappings between DC-X character styles and CUE annotations

The dcx-converters/wire/target property contains the following settings:

publications
Contains an array of entries, one for each supported publication. Each array entry can contain
the following properties:

Copyright © 2015-2023 Stibo DX A/S Page 178

CUE Tech Guide

text
The display name (label) of a CUE publication.

value
The internal name of the publication.

containers
An array of entries, one for each container that may be used for imported wire stories.
Each array entry can contain the following properties:

text
The display name (label) of the container.

value
The internal name of the container.

fields
An array of entries, one for each container field that is to be used. Each array entry
can contain the following properties:

name
The name of a DC-X field to be imported.

meta
The name of the container field into which the content of name is to be
imported.

content-types
An array of entries, one for each content type that may be used for imported wire stories.
Each array entry can contain the following properties:

text
The display name (label) of the content type.

value
The internal name of the content type.

fields
An array of entries, one for each content type field that is to be used. Each array
entry can contain the following properties:

name
The name of a DC-X field to be imported.

meta
The name of the content type field into which the content of name is to be
imported.

story-elements
An array of entries, one for each story element in this content type that is to be
used. Each array entry can contain the following properties:

value
The internal name of the story element.

fields
An array of entries, one for each story element field that is to be used. Each
array entry can contain the following properties:

name
The name of a DC-X field to be imported.

Copyright © 2015-2023 Stibo DX A/S Page 179

CUE Tech Guide

meta
The name of the story element field into which the content of name is
to be imported.

extract-substrings
If the source DC-X field contains rich text (XHTML), then setting this
property to True, instructs CUE Zipline to extract the text content of each
block element in the source field and create a separate story element of this
type for each of them. In other words, you can use it to transform a sequence
of p elements in the source field to a corresponding sequence of paragraph
story elements in CUE.

binary-content-types
An array of entries, one for each binary content type that may be used for imported wire
stories. Each array entry can contain the following properties:

text
The display name (label) of the content type.

value
The internal name of the content type.

fields
An array of entries, one for each content type field that is to be used. Each array
entry can contain the following properties:

name
The name of a DC-X field to be imported.

meta
The name of the content type field into which the content of name is to be
imported.

summary-fields
An array of entries, one for each summary field that is to be used. Each array entry
can contain the following properties:

name
The name of a DC-X field to be imported.

meta
The name of the summary field into which the content of name is to be
imported.

annotations
An array of entries containing mappings between DC-X CSS classes and CUE storyline
annotations. Note that these mappings are global, not publication-specific. Each array entry
must contain the following properties:

name
The name of a CSS class used in DC-X

meta
The name of a corresponding CUE annotation.

Copyright © 2015-2023 Stibo DX A/S Page 180

CUE Tech Guide

5.3 Login Credentials
The DC-X extension uses the credentials supplied when you log in to CUE as login credentials for DC-
X as well. You must therefore use the same username/password combinations in both systems for the
DC-X extension to work.

5.4 Using The Main DC-X Integration
Once the DC-X integration is correctly installed and configured, DC-X appears as a secondary search
panel on the left side of the CUE window:

When expanded, the DC-X panel looks and behaves like the main CUE search panel with the following
differences:

• It offers access to DC-X assets, rather than ordinary CUE content

• The search and filtering options reflect the search and filtering functionality provided by DC-X

Copyright © 2015-2023 Stibo DX A/S Page 181

CUE Tech Guide

Each DC-X asset is represented in the panel search results by an entry consisting of a thumbnail
preview image, a title, description, owner and a series of DCX flags describing attributes of the asset
such as its resolution, whether it is an online-only asset, whether it is expensive and so on:

To use DC-X assets in a publication, you simply drag them from the search results list and drop them
in an appropriate location in a content item, in exactly the same way as you would drop images and
videos selected from the ordinary search panel. When an asset is dropped in this way, a content item of
the appropriate type is created for it, and a copy of the binary object is stored in the Content Store. The
copied object is marked to indicate it is a DC-X asset, and the new content item is set to a state defined
in the DC-X drop trigger configuration (or draft if the drop trigger configuration does not specify a
state). If the dropped asset has been dropped before and already exists as a content item in CUE, then
that content item is used and its state is not modified.

If you have a DC-X client running on the same machine as CUE, you can also drag assets directly
from the DC-X client into CUE. Assets added in this way behave in exactly the same way as assets
dragged from the DC-X search panel in CUE.

Information about the use of DC-X assets in CUE is reported back to DC-X. The usage information is
recorded in DC-X as follows:

• Assets related to a published story are assigned a usage entry with the state Published, along with
the publication date and URL of the story.

• Assets related to a story that is not published (or to the working copy of a published story) are
assigned a usage entry with the state Planned.

When assets are removed from a story, the corresponding usage entry is removed from DC-X. This
usage information is displayed in the DC-X Usage tab.

Depending on how the system has been configured, video and graphic content uploaded to CUE from
other sources may be automatically passed on to DC-X for storage. The system can be configured to
only store certain content types in DC-X, and only if they are added to specific content items. In additi

on, they may not actually be uploaded to DC-X until they reach a specified state in the workflow.

CUE's General Info metadata panel section contains a DAM info field that shows information about
the current status of content items that meet the requirements for upload to DC-X. It can contain the
following status messages:

Upload not initiated
The content item has not yet reached the workflow state that triggers upload.

Uploading
Upload is in progress.

Copyright © 2015-2023 Stibo DX A/S Page 182

CUE Tech Guide

error-code
Upload failed.

dcx-document-id (a long random string)
Upload has succeeded.

5.5 Using The DC-X Wire Integration
The DC-X wire integration makes it possible to use DC-X as a source of wire stories for use in CUE
publications. Wire stories managed by DC-X can be browsed and searched from CUE, and selected
for use in CUE publications. Selected wire stories are imported into CUE and can then be edited and
published to multiple channels in the normal way.

If CUE and CUE Zipline have been configured to support the use of DC-X wires, then you will see a
button for a DC-X Wires panel on the left side of the CUE window:

When expanded, the DC-X Wires panel looks and behaves like the main CUE search panel with the
following differences:

• It offers access to wire stories in DC-X, rather than ordinary CUE content

• The search and filtering options reflect the search and filtering functionality provided by DC-X

You can access a listed wire story in three different ways:

• Double-click to open it in DC-X

• Press the space bar to display a quick view of the story in CUE

• Right click to display the context menu and select Use Wire to import the story into CUE.

Copyright © 2015-2023 Stibo DX A/S Page 183

CUE Tech Guide

Selecting Use Wire usually displays the following dialog, allowing you to choose what kind of story to
create, and in which publication:

This dialog is effectively the same as the Create new dialog, and works in the same way. The values
available for selection may, however, be more constrained - you may not be able to import wires into
all of the publications that you are allowed to create stories in, for example, and you may not have the
same choice of containers/content types. The values available for each of these options are determined
by the configuration settings specified in the dcx-converters/wire/target section of the CUE
Zipline configuration file (see section 5.2.5.3).

The Use Wire Service dialog shown above is only displayed if it is actually needed (that is, if there
are actual choices to be made). If the configuration in the dcx-converters/wire/target
section of the CUE Zipline configuration file only specifies one publication and container type,
then it will not be displayed and the wire story will be imported to the configured destination
immediately. Note also that the Publication option in the dialog will be automatically set to your
default publication if possible (that is, of you have specified a default publication in your personal
preferences and if that publication is one of the publications specified in the CUE Zipline wire
service configuration).

Any binary resources such as images or videos that are referenced in the wire story are imported along
with it as related content.

Once a wire story has been imported it can be used in exactly the same way as any other CUE content
item.

Copyright © 2015-2023 Stibo DX A/S Page 184

