
CUE Zipline

User Guide
1.17.1-2

Table of Contents

1 Introduction.. 5

1.1 Content Store to CUE Print..5

1.2 Content Store to DC-X... 6

1.3 CUE Print to Content Store..7

1.4 NewsML Import/Export... 7

1.5 Print Previews in CUE..7

1.6 Classic/Storyline Conversions.. 8

1.7 Clustering..8

2 Installation.. 10

2.1 Ubuntu and Debian.. 10

2.2 RedHat..10

2.3 Configuring CUE Zipline...11

2.4 Proxying CUE Zipline... 11

2.5 Using Self-Signed Certificates..12

3 Configuration..14

3.1 version.. 14

3.2 endpoints.. 14

3.3 event_listener..16

3.4 server.. 16

3.4.1 converters.. 17

3.5 resolver... 18

3.6 logging.. 18

3.7 heartbeat...18

3.8 conversion-templates..19

3.9 filter... 19

3.10 processors.. 20

3.10.1 cue-print Processor... 21

3.10.2 dcx Processor..24

3.10.3 newsml Processor... 27

3.10.4 newsml-import Processor.. 28

3.10.5 External Processors.. 29

3.11 copyback...34

3.12 dcx-converters.. 36

3.12.1 Content Duplication... 37

3.13 audit.. 38

3.14 cluster... 38

3.15 monitoring... 39

3.16 CUE Print Asset Mapping.. 40

3.17 Mapping Attributes..41

3.17.1 Meta Attributes.. 43

3.17.2 Templates.. 45

3.18 locations..46

3.19 Environment Variables..46

4 Conversion Templates...50

4.1 A Templating Example... 51

4.1.1 The Storyline JSON Structure...51

4.1.2 The Target CUE Print Structure..54

4.1.3 The Pseudo-Storyline Structure.. 54

4.1.4 The Conversion Templates... 59

4.2 Handling Other Conversions.. 60

4.3 How To... 60

4.3.1 Supporting Annotated Image Captions... 60

5 The Events Plugin... 65

5.1 Installation...65

5.1.1 Ubuntu and Debian... 65

5.1.2 RedHat and CentOS... 65

5.2 Configuration...66

5.2.1 Amazon SQS...66

5.2.2 RabbitMQ (AMQP Protocol).. 67

6 The Zip Export Plugin..69

6.1 Installation...69

6.2 Configuration...69

6.2.1 Export to Disk..70

6.2.2 Export to S3.. 70

7 The Sophi Plugin... 72

7.1 Installation...72

7.2 Configuration...72

7.2.1 Sophi Content Feed Configuration..73

7.2.2 Sophi List Updater Configuration.. 75

8 Clustering... 79

8.1 Front End..79

8.1.1 Load Balancing..80

8.2 Core.. 81

8.2.1 Negotiations...81

8.2.2 Change Log Monitoring...81

8.2.3 Example...82

9 Logging.. 84

9.1 Configuration...86

10 Monitoring.. 89

10.1 Requesting a Report.. 89

10.2 Report Structure... 90

10.3 Components..90

10.3.1 Restarts... 91

10.3.2 State.. 91

10.3.3 Processors...92

11 Recording Catch Files... 94

11.1 zl-catch..94

11.2 The Catch File API...95

CUE Zipline User Guide

1 Introduction

CUE Zipline is a format conversion tool that is primarily intended to provide real-time synchronization
of content between CUE Content Store and other Stibo DX systems. Currently, CUE Zipline can
provide:

• Automatic synchronization of storyline content (not classic rich text stories) from CUE Content
Store to CUE Print

• Automatic synchronization of binary assets and /or stories from CUE Content Store to DC-X

• On-demand synchronization of storyline content from CUE Print back to CUE Content Store

CUE Zipline is implemented as a web service that is capable of retrieving/receiving content from CUE
Content Store, CUE Print, converting it to the required output format and sending it to the required
destination service (CUE Content Store, CUE Print or DC-X).

CUE Zipline monitors activity in CUE Content Store by listening for server-sent events (SSE). When it
receives an SSE notification of a significant content change, it:

• Sends a request for the new or modified content to the Content Store

• Performs any data transformation that is required

• POSTs the transformed content to the required target service (CUE Print or DC-X)

Changes made in CUE Print are not automatically copied back to the Content Store. It is only
possible to copy back changes made in print packages containing text that originated in the Content
Store, and such changes are only copied back if the user explicitly requests it by selecting the Copy
to CUE option. When this happens CUE Print sends the changed content directly to CUE Zipline in a
POST request. CUE Zipline then:

• Performs the required format conversion

• POSTs the converted content to the Content Store

CUE Zipline can, however, also be used for other conversion tasks:

• Automated export of storyline content to NewsML-G2 files

• Automated import of storyline content from NewsML files

• Converting print storylines into CUE Print texts for the purpose of generating print previews.

• Converting rich text-based "classic" content items into storyline content items.

All SSE events in a CUE system are routed through an SSE Proxy, so in order to monitor CUE Content
Store, CUE Zipline is connected as a client to the SSE Proxy.

The most important conversions performed by CUE Zipline are described in more detail in the
following sections. All the text format conversions are carried out using Jinja2 templates.

1.1 Content Store to CUE Print

Copyright © 2020-2023 Stibo DX A/S Page 5

https://en.wikipedia.org/wiki/Server-sent_events
https://iptc.org/standards/newsml-g2/
http://docs.escenic.com/sse-proxy-guide/1.1/introduction.html
https://palletsprojects.com/p/jinja/

CUE Zipline User Guide

All content changes that occur in the CUE Content Store result in the generation of SSE events, which
are passed to the SSE Proxy. The SSE Proxy passes on these events to all of its subscribers, one of
which is CUE Zipline. CUE Zipline filters these incoming events, ignoring all irrelevant events. If an
event describes a change to a print storyline that CUE Zipline is configured to monitor, then CUE
Zipline:

• Sends a request for the new or modified content item to the Content Store

• Converts the content item to the format required by CUE Print

• POSTs the converted content item to the CUE Print service

Mapping content to CUE Print may require conversion of multiple content items from CUE Content
Store (story, images, graphics, ...) to multiple objects in CUE Print (text object, image/graphics
objects). Each object mapping consists of multiple parts: A set of attributes of the target object
(identifying meta-data like an object name, online URL, etc.), a text part, representing the article text
or an image caption, and possibly a binary part.

While the binary part is transferred without manipulation, the text part is converted in CUE Zipline,
using templates, and the attributes are mapped based on configuration.

Default templates that work with standard content types are included with the installation, in the /
etc/cue/zipline/conversion-templates/cue-print/storyline-to-cue-print folder.
You may need to modify these templates to work with your content types. For further information see
chapter 4.

Likewise, default attribute mappings are included with the installation, in the /etc/cue/zipline/
asset-mapping folder. Modification of these files is less likely to be needed, but it is possible. For
further information see section 3.16.

1.2 Content Store to DC-X

All content changes that occur in the CUE Content Store result in the generation of SSE events, which
are passed to the SSE Proxy. The SSE Proxy passes on these events to all of its subscribers, one of
which is CUE Zipline. CUE Zipline filters these incoming events, ignoring all irrelevant events. If
an event describes the addition of a classic story, storyline or binary asset (that is, a content item
referencing a binary object such as an image, graphic, video, audio file, document, spreadsheet etc.)
then CUE Zipline:

• Sends a request for the new content item to the Content Store

• Converts the content item to the format required by DC-X

• POSTs the converted content item to the DC-X service

The purpose of synchronizing stories and storylines to DC-X is to take advantage of DC-X
syndication functionality. Content should not in general be modified in DC-X as any changes
made may be overwritten the next time the content item is modified in the Content Store, thereby
triggering a synchronization event.

Copyright © 2020-2023 Stibo DX A/S Page 6

CUE Zipline User Guide

1.3 CUE Print to Content Store

In the standard CUE workflow, CUE Content Store is the primary database; the CUE Print server
plays a secondary role. In principle, all content editing is done in CUE, including editing of storyline
print variants. CUE Print is then mostly used for layout-related adjustments that have no effect on the
content. There is therefore no need for SSE-based automated synchronization from CUE Print to the
Content Store.

In reality, however, content changes are sometimes made in CUE Print (typically last-minute changes)
and there is therefore a need to be able to copy changes back to the Content Store (on demand rather
than automatically).

For print packages containing texts that originated in the Content Store, CUE Print offers a Copy to
CUE menu option. Selecting this option causes CUE Print to send an HTTP POST request to CUE
Zipline containing the current text. CUE Zipline converts the supplied text to the required format and
POSTs the result to the Content Store, thus synchronizing the print variant in the Content Store with
the CUE Print package.

Additionally, the ordering workflow in CUE Print can trigger content creation in Content Store if a
target container type is selected for the shape(s) content is being ordered for. The cue-print product
mapping configuration is used to determine which of the chosen containers' first destinations will be
used when creating the content.

Default templates that work with standard content types are included with the installation, in the /
etc/cue/zipline/conversion-templates/cue-print/cue-print-to-storyline folder.
You may need to modify these templates to work with your content types. For further information see
chapter 4.

1.4 NewsML Import/Export
CUE Zipline can be used both for import of content from the NewsML exchange format and for
exporting content to NewsML. For import purposes, CUE Zipline can be configured to watch specified
folders for the appearance of NewsML files and import any files that appear there. For export, CUE
Zipline uses the same SSE-based method as is used for the CUE Print and DC-X conversions, making
it possible to automatically export NewsML versions of modified content items. The converted files are
not POSTed to a remote service, but saved to a specified folder on the local machine.

Default templates that work with standard content types are included with the installation, in the /
etc/cue/zipline/conversion-templates/newsmlg2 folder. You may need to modify these
templates to work with your content types. For further information see chapter 4.

1.5 Print Previews in CUE
CUE Zipline is used by CUE (the CUE editor) for generating previews of print storylines. When CUE
needs to generate a print preview, it POSTs the content item to CUE Zipline. CUE Zipline then converts
the content item into a CUE Print text and returns the text to CUE in its response. CUE then sends the
text to CUE Print and receives a preview in response.

Copyright © 2020-2023 Stibo DX A/S Page 7

CUE Zipline User Guide

This feature makes use of the same conversion templates as the section 1.1 conversion.

1.6 Classic/Storyline Conversions
CUE Zipline can be used for converting "classic" rich text-based content items to storylines and vice-
versa. Assume, for example, that you have a stream of imported content from an external source
such as a wire feed, imported as "classic" rich text-based content items, but that you need to be able
to open these as storylines in CUE in some circumstances. You can meet such a need by creating an
enrichment service that submits the rich text content items to CUE Zipline, which then converts it and
returns the resulting storyline. For more information about this use of CUE Zipline, see section 3.4.1.

A very simple set of default templates that works with standard content types is included with the
installation, in the /etc/cue/zipline/conversion-templates/classic folder. You can,
however, create your own more sophisticated conversions. For further information see chapter 4.

1.7 Clustering
In order to ensure that CUE Print, DC-X and other external systems integrated with the Content
Store via NewsML remain synchronized with the Content Store at all times, CUE Zipline needs to be
permanently available. You can improve the availability of CUE Zipline by running several instances
of it on different hosts in a cluster: if one of the instances becomes unavailable (because its host
goes offline, for example), then one of the other instances can take over, and synchronization is not
interrrupted.

When several instances of CUE Zipline are run as a cluster, one instance is the active instance. It
monitors the Content Store for changes and exports changed content to CUE Print, DC-X and/or
NewsML files, in accordance with its configuration. The other instances are inactive. If the active
instance becomes unavailable for some reason, then one of the inactive instances will be redesignated
as the active instance and continue processing from where the previous active instance stopped. On
startup, the instances in a cluster negotiate between themselves to determine which one will be the
active instance.

If all the instances in the cluster become unavailable for some reason, then processing will continue
from where it was interrupted when the cluster is restarted.

Clustering only affects CUE Zipline's SSE-driven functionality, that is:

• Synchronization of storyline content from CUE Content Store to CUE Print

• Synchronization of binary assets from CUE Content Store to DC-X

• Automated export of storyline content to NewsML

What this means is that inactive instances are not necessarily completely inactive - they will respond as
normal to incoming requests from the CUE editor or from CUE Print to perform other functions such
as:

• On-demand synchronization of storyline content from CUE Print back to CUE Content Store

• Converting Content Store print storylines into CUE Print texts for the purpose of generating print
previews.

Copyright © 2020-2023 Stibo DX A/S Page 8

CUE Zipline User Guide

• Converting rich text-based "classic" content items into storyline content items.

Inactive instances can also be used for automated import of NewsML files.

Copyright © 2020-2023 Stibo DX A/S Page 9

CUE Zipline User Guide

2 Installation

The CUE Zipline installation procedure is platform dependent – follow the instructions in one of
the following sections. If you have a predefined CUE Zipline configuration file, you can streamline
the installation process by copying it to /etc/cue/zipline/zipline.yaml before installing.
Otherwise, after installing you will need to follow the instructions in section 2.3.

CUE Zipline requires Python version 3.8 or later.

All installation operations must be carried out as root (it is not always sufficient to use sudo).

2.1 Ubuntu and Debian
To install CUE Zipline:

1. Install the CUE Zipline dependencies:

apt-get install \
 curl \
 gnupg \
 python3-pip \
 python3

2. Add the Stibo DX APT source for the appropriate codename to /etc/apt/sources.list.d/
stibodx.list. To add the source for the radon codename (for example), enter:

echo deb https://apt.escenic.com radon main non-free \
 >> /etc/apt/sources.list.d/stibodx.list

3. Add your Stibo DX APT credentials to /etc/apt/auth.conf.d/stibodx.conf:

vi /etc/apt/auth.conf.d/stibodx.conf

machine apt.escenic.com
 login username
 password password

4. Add the DEB signing key used on the packages in the APT repository, and update your APT cache:

curl --silent http://apt.escenic.com/repo.key | apt-key add -
apt-get update

5. Finally, install CUE Zipline:

apt-get install cue-zipline

2.2 RedHat
To install CUE Zipline:

1. Install the CUE Zipline dependencies:

yum install -y \
 findutils \
 gcc \
 python38 \

Copyright © 2020-2023 Stibo DX A/S Page 10

CUE Zipline User Guide

 python38-devel \
 python38-pip

2. On RedHat 7 only (this step is not required on RedHat 8 or later), enter the following command
to pull in Python 3.8 from RedHat Software Collections:

yum install -y \
 rh-python38-python \
 rh-python38-python-pip \
 rh-python38-python-devel

3. Add the Stibo DX YUM source by entering:

cat > /etc/yum.repos.d/stibodx.repo <<EOF
[stibodx]
name=Stibo DX packages
baseurl=https://user:pass@yum.escenic.com/rpm/
gpgcheck=0
EOF

4. Finally, install CUE Zipline:

yum install cue-zipline

2.3 Configuring CUE Zipline
If you copied a ready-made configuration to /etc/cue/zipline/zipline.yaml before installing,
then no further steps are required: the CUE Zipline systemd service has been automatically started.

If you did not have a ready-made configuration available, a default zipline.yaml file will have been
created in the /etc/cue/zipline/ folder, which will need editing. For a detailed description of the
configuration file, see chapter 3.

When you have finished editing zipline.yaml, you will need to restart CUE Zipline by entering:

systemctl restart cue-zipline

2.4 Proxying CUE Zipline
Since CUE Zipline exposes both public and private web service end-points, it is strongly advised to
install a reverse proxy in front of it, for use by the CUE editor.

The reverse proxy can also function as an SSL/TLS termination point, allowing communication
between the CUE editor and CUE Zipline to be secure.

Internal requests, e.g. from CUE Print and trusted enrichment services would still use the direct
connection to the server address configured in zipline.yaml, which allows access to all web service
end-points.

The reverse proxy should pass through requests to /index.xml, escenic/text/*, and escenic/
convert/default (or escenic/convert/* if custom conversions have been configured).

The reverse proxy also needs to set the X-Forwarded-For, X-Forwarded-Proto, and X-Real-IP
headers on the request to CUE Print.

Copyright © 2020-2023 Stibo DX A/S Page 11

https://developers.redhat.com/products/softwarecollections/overview

CUE Zipline User Guide

Alternatively, the reverse proxy can set the Forwarded header, which combines the information of the
other headers.

As an example, if using nginx as the reverse proxy, add the following snippet in the server
configuration:

location ~ ^/cue-print-zipline/(index.xml|escenic/text|escenic/convert/default) {
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $http_host;
 proxy_pass http://localhost:12791;
 proxy_pass_header Set-Cookie;
 proxy_read_timeout 185s;
 proxy_set_header Connection '';
 proxy_http_version 1.1;
 chunked_transfer_encoding off;
}
location /cue-print-zipline {
 deny all;
}

This example proxies request for the public end-points to port 12791 on the local host (assuming CUE
Zipline runs on the same server) and denies access to all other end-points.

2.5 Using Self-Signed Certificates
CUE Zipline depends on the curated set of certificate authority (CA) certificates from the Mozilla
Project. This means that connecting to servers via HTTPS should work out of the box so long as the
server certificates have been acquired from a public certificate authority.

Certificate verification will, however, fail if a server or proxy that CUE Zipline needs to connect to
uses a self-signed certificate. To prevent this happening, CUE Zipline must be preconfigured with
information about your custom CA certificate. To do this, you need to create a certificate bundle,
containing all the CA certificates needed by CUE Zipline, both your custom CA certificate and all the
public ones. You then need to configure CUE Zipline with the location of the bundle by setting the
REQUESTS_CA_BUNDLE environment variable.

You can get the path of the file containing CUE Zipline's default CA certificate bundle by entering the
following command:

$ python -m certifi

You must not directly add your custom certificate to this file, because the file is overwritten every time
CUE Zipline is upgraded. What you need to do instead is create a new bundle by:

• Copying the file to a new location.

• Appending the content of your custom CA certificate (not the server certificate) to the new file.

For example:

$ cat $(python -m certifi) myCA.pem > /path/to/myCABundle.pem

Copyright © 2020-2023 Stibo DX A/S Page 12

CUE Zipline User Guide

You now have a new certificate bundle containing all the certificates needed by CUE Zipline. Set the
REQUESTS_CA_BUNDLE environment variable to point to this file, and start CUE Zipline:

$ export REQUESTS_CA_BUNDLE=/path/to/myCABundle.pem
$ zipline

If REQUESTS_CA_BUNDLE is not set when CUE Zipline starts, then it looks for the environment
variable CURL_CA_BUNDLE. If CURL_CA_BUNDLE is also not set, then it uses the Mozilla curated CA
certificate set included in the CUE Zipline distribution.

Copyright © 2020-2023 Stibo DX A/S Page 13

CUE Zipline User Guide

3 Configuration

CUE Zipline is configured by editing a YAML configuration file, zipline.yaml located in the /etc/
cue/zipline folder.

YAML is a plain text file format that uses indentation as a means of structuring data. Array values can
be specified by preceding each array element with a hyphen followed by a space (you will see examples
of this in the following descriptions). The most important thing to remember when editing a YAML file
is to never use tabs for indentation, only spaces.

The file has the following top-level entries:

version:
endpoints:
event_listener:
server:
resolver:
logging:
heartbeat:
conversion-templates:
filter: []
processors: []
copyback:
dcx-converters:
audit:
cluster:
monitoring:
locations:

3.1 version
version specifies the current configuration file version. It must be set to 3:

version: 3

3.2 endpoints
endpoints contains the URLs and credentials CUE Zipline needs to access Content Store, CUE Print
and DC-X:

endpoints:
 content_store:
 url: content-store-host/webservice/
 user: content-store-user
 password: content-store-password
 system-id: system-id
 cue_print:
 url: cue-print-host/newsgate-cf/
 user: cue-print-user
 password: cue-print-password
 dcx:

Copyright © 2020-2023 Stibo DX A/S Page 14

https://yaml.org/spec/1.2/spec.html

CUE Zipline User Guide

 url: dcx-endpoint-url
 user: dcx-user
 password: dcx-password
 dpres_cook:
 url: cook-endpoint-url
 user: cook-user
 password: cook-password

A dcx entry is only required if your installation actually includes a DC-X system and you intend to use
CUE Zipline for synchronization of either binary assets or stories/storylines.

A dpres_cook entry is only required if your installation configures an attribute mapping referencing
the "cook-url" meta attribute.

Each endpoint supports the following properties:

url (required)
The URL of the service end-point.

user (required)
The user name to use for authentication against the service endpoint.

password (optional, one of password or password_file must be specified)
The password to use for authentication against the service end-point.

password_file (optional, password or password_file must be specified)
The path of a local file that contains the password to use for authentication against the service
end-point. If given, the contents of the file is read using the systems character encoding and
used for password.

The content_store endpoint also supports the following additional property:

system-id (optional)
A global identifier for this Content Store endpoint. If specified, the identifier is supplied when
uploading assets to both CUE Print and DC-X endpoints. It is useful at installations where CUE
Print and/or DC-X systems are connected to more than one Content Store, ensuring that both
assets and asset usage are correctly attributed. The system-id set here can be overridden in
the cue-print and dc-x processor definitions (see section 3.10.1 and section 3.10.2), allowing
different IDs to be used for each system if required.

For backwards compatibility, the property passwd is also supported in an endpoint configuration. It
has the same meaning as password.

CUE Zipline supports the conventional http_proxy, https_proxy, and no_proxy environment
variables, if endpoints need to be connected to via a proxy.

The http_proxy and https_proxy variables define the proxies to use for HTTP and HTTPS
connections. For example:

$ export HTTP_PROXY=http://insecure.proxy.lan

$ export HTTPS_PROXY=https://secure.proxy.lan

It is possible to use a different protocol when connecting to the proxy from what is required for the
backend. For instance, using HTTP to talk to the proxy, while using HTTPS to connect to the backend:

$ export https_proxy=http://proxy.lan

Copyright © 2020-2023 Stibo DX A/S Page 15

CUE Zipline User Guide

If a proxy password is required for the connection, then it should be part of the URL configured for the
proxy. For example:

$ export https_proxy=https://zipline:password@proxy

The no_proxy variable defines a comma-separated list of host names that can be accessed without
passing through a proxy. For instance:

$ export no_proxy=localhost,127.0.0.1,*.internal.lan

All parameters are supported in both all lowercase and all uppercase variants. So configuring either
https_proxy or HTTPS_PROXY will cause CUE Zipline to use the proxy. If both versions are set, they
should be set to the same value.

3.3 event_listener
event_listener is an optional entry that can be used to specify a URL and credentials for
accessing the SSE Proxy. It is not required since CUE Zipline is capable of discovering the SSE Proxy
itself, and if no other login credentials are specified, it will use the Content Store login credentials
specified under the endpoints entry. You can, however, user the event_listener entry to override
the discovery process, or specify alternative credentials:

event_listener:
 sse_endpoint:
 url: sse-proxy-endpoint-url
 user: content-store-user
 passwd: content-store-password

 progress_path: progress-file-path

The individual parameters should be set as follows:

sse_endpoint (optional)
If the default lookup of the server sent events (SSE) endpoint isn't sufficient, this is where a
custom URL (and possibly user name and password) can be configured.

If a URL is configured here, CUE Zipline will not perform an automatic lookup through CUE
Content Store

progress_path (optional)
The path of a file in which CUE Zipline stores its current read positions in CUE Content Store
change logs between restarts.

If no path is configured here, CUE Zipline uses the value of the
ZL_EVENT_LISTENER_PROGRESS_PATH environment variable or, if that is undefined or
empty, the default path /var/cache/zipline/task-progress.json.

3.4 server
server contains settings for CUE Zipline's built-in web server. The server should be configured to
only accept requests from appropriate sources.

server:

Copyright © 2020-2023 Stibo DX A/S Page 16

CUE Zipline User Guide

 address: 127.0.0.1
 port: 12791
 context-path: /cue-print-zipline
 accepted-origins:
 - https?://localhost(:[0-9]+)?
 - https?://([^.]+\.)*my-cue-domain.com(:[0-9]+)?
 converters:

The individual parameters should be set as follows:

address (optional, default: 127.0.0.1)
The IP address of the network interface on which the server is to listen. For production purposes
It should usually be set either to the address of a network interface or 0.0.0.0.

port (optional, default: 12791)
The port on which the server is to listen.

context-path (required)
The name of the CUE Zipline service (the first part of the service URL after the host name and
port). By convention it should be set to /cue-print-zipline.

accepted-origins (required)
An array of regular expressions defining the sources from which the server will accept requests.
The list should usually be limited to the local host and the CUE (editor)'s domain (needed to
support CUE Zipline's support for print previews in CUE).

converters
See section 3.4.1.

3.4.1 converters

CUE Zipline provides a default service for converting simple rich text-based content items to
storylines. This default converter can be used by any client with access to CUE Zipline. An enrichment
service, for example, can convert a rich text-based content item to a storyline by POSTing the content
item to https://zipline-host/cue-print-zipline/escenic/convert/default. A rich
text content item POSTed to this URL will be passed to the Jinja2 template /etc/cue/zipline/
conversion-templates/classic/classic-to-storyline/storyline.json, which returns
a JSON structure containing a pseudo-storyline, that can be used to construct a storyline content
item (see below for more about pseudo-storylines).

In some cases, however, this simple conversion might be insufficient. The imported content items
might come from different sources, and therefore be imported as different content types with different
fields. In this case you would then want to define your own templates for converting the different
content types. Alternatively you might want to set up a converter to convert content items in the
opposite direction – storyline to classic.

The server/converters section of zipline.conf allows you to expose such specialized
converters on their own URLs. For example:

server:
 converters:
 ap:
 template_dir: /etc/cue/zipline/myproject/classic_converters
 template: ap_converter.json
 ntb:
 template_dir: /etc/cue/zipline/myproject/classic_converters
 template: ntb_converter.json

Copyright © 2020-2023 Stibo DX A/S Page 17

CUE Zipline User Guide

For each custom converter you add an entry under server/converters. The entry name you use
becomes the final segment of the converter URL. The entry name ap in the example above will be
exposed as https://zipline-host/cue-print-zipline/escenic/convert/ap. Each such entry
must have two child settings:

template_dir (required)
The absolute path of the folder containing the custom template.

template (required)
The name of the custom template.

Note that these transformations convert between classic content items in the form of Atom entries as
returned by the Content Store web service and pseudo-storylines. A pseudo-storyline:

• Only contains what appears in the storyline editor in CUE – it does not include any of the metadata
and other fields that make up a complete content item.

• Contains a modified version of the storyline data structure. It is easier to convert between the
pseudo-storyline structure and XML formats such as NewsML, CUE Print text XML and classic
CUE content items than it is to convert directly between the true storyline format and such XML
formats.

These converters therefore only provide a partial conversion between classic content items and
storyline content items. CUE Zipline does, however provide an API for converting between the
storyline and pseudo-storyline formats.

3.5 resolver
CUE Zipline's resolver is responsible for retrieving the content items referenced in incoming events,
and all the information needed to deal with them. The resolver section of the configuration file is
optional, but can be used to limit the size of the resolver's cache:

resolver:
 cache:
 max_size:

max_size specifies the maximum number of elements the resolver cache may hold. The default is
1000.

3.6 logging
The logging section is used to configure the log messages output by CUE Zipline. It contains a
standard Python logging configuration as described here. For further information about CUE Zipline
logging, see chapter 9.

3.7 heartbeat
CUE Zipline sends a heartbeat request at regular intervals to all the services it is connected to (the
Content Store, CUE Print and DC-X). If it does not get a response then the service is marked as

Copyright © 2020-2023 Stibo DX A/S Page 18

https://docs.python.org/3.6/library/logging.config.html#dictionary-schema-details

CUE Zipline User Guide

currently unavailable. The heartbeat section of the configuration file contains the following two
properties:

period (optional, default: 500)
The interval between heartbeats, specified in seconds.

timeout (optional, default: 5)
The length of time CUE Zipline waits for a response before marking a service as unavailable,
specified in seconds.

3.8 conversion-templates
conversion-templates contains a single property, path, that specifies the location of all the Jinja2
templates used to carry out the various format conversions performed by CUE Zipline. The location is
specifed as an absolute or relative path (relative to the location of the configuration file):

conversion-templates:
 path: ./conversion-templates

For further information about the templates stored in this folder, see chapter 4.

3.9 filter
filter is used to filter the stream of incoming events from the SSE Proxy. It contains an array of
filters that are used to select the events that CUE Zipline will submit for processing: all other events are
ignored.

filter:
 - publication
 - tomorrow-online
 - tomorrow-today
 - living-tomorrow
 - type:
 - storyline
 - print
 - print-story
 - story_type:
 - storyline
 - state
 - published
 - approved
 - created-within:
 weeks: 4

The filter array may contain any of the following filter types:

publication
Contains an array of publication names. Only events affecting one of the listed publications are
selected.

type
Contains an array of content type names. Only events affecting one of the listed content types
are selected.

Copyright © 2020-2023 Stibo DX A/S Page 19

https://palletsprojects.com/p/jinja/

CUE Zipline User Guide

story_type
Contains an array of story types (storyline or classic). Only events affecting one of the
listed story types are selected.

state
Contains an array of workflow state names. Only events affecting content items in one of the
listed states are selected.

The workflow state names can be specified as a YAML/JSON array of names or as a string,
containing a comma-separated list of state names.

created_within
Only events affecting content items created within the specified period are selected. You can
specify the required period in weeks, days, hours, minutes or seconds.

Only events which satisfy all of the filter conditions listed in the filter array are selected. You can,
however, control exactly how the filter conditions are combined by making use of two additional
filters:

all
Contains an array of sub-filters. Only events selected by all the sub-filters are selected. In
the following example, an event will only be selected if it affects a content item of the type
storyline that is in the state published.

- all:
 - type:
 - storyline
 - state:
 - published

any
Contains an array of sub-filters. Any event selected by at least one of the sub-filters is selected.
In the following example an event will be selected if it affects a content item that is either of the
type archive or was created within the last 24 hours.

- any:
 - created-within:
 hours: 24
 - type:
 - archive

3.10processors
processors contains an array of processor definitions. All the events selected in the filters section
of the configuration file are passed to all the processors defined in this section (except for the newsml-
import processor). When a processor receives an event, it:

• Performs additional filtering to determine what do with the event (process it in some way or ignore
it)

• If the event is to be processed:

• Carries out any necessary transformations on the content referenced by the event

• Sends the transformed content to the appropriate destination

The following types of processor may be defined:

Copyright © 2020-2023 Stibo DX A/S Page 20

CUE Zipline User Guide

type: cue-print
This processor type converts the content item referenced in an event to a CUE Print text item or
asset and submits it in a POST request to the CUE Print server.

type: dcx
This processor type converts the content item referenced in an event to a DC-X asset and
submits it (along with its metadata) in a POST request to the DC-X server.

type: newsml
This processor type converts the content item referenced in an event to a NewsML document
and writes it to file.

type: newsml-import
This processor is an import processor rather than an export processor, and therefore does
not receive or respond to events. Instead, it monitors a specified folder for changes, and when
NewsML files appear there, imports them as storyline content items.

It is also possible to define external processors. Unlike the internal processors provided by CUE
Zipline, external processors do not have a type property.

All these processor types (including external processors) are described in detail in the following
sections.

3.10.1 cue-print Processor

A cue-print processor converts the content items referenced by the events it receives to CUE Print
texts or assets and uploads them to CUE Print. A cue-print processor definition consists of the
following entries:

 - type: cue-print
 system-id:
 asset-mapping:
 conversion-templates:
 product-mapping:
 desk-mapping:

type must be set to cue-print. The other entries are:

system-id (optional)
May be used to identify the source system when attaching multiple CUE systems to a single CUE
Print system. The expected value is a string, used by CUE Print to identify the CUE system to
send content back to.

If this property is not specified, then the ID is read from the global
ZL_CUE_PRINT_EXTERNAL_SYSTEM_ID environment variable. If this environment variable
is not set, then the global system-id specified as part of the Content Store endpoint definition
(see section 3.2) is used as a fallback. If no system-id is specified there either, then no external
system ID is reported to CUE Print.

asset-mapping
May optionally be used to override the location of the asset mapping configuration files for CUE
Print. The value is a path to a folder containing the asset mapping configuration files. The path
is resolved relative to the directory containing the main CUE Zipline configuration file.

Copyright © 2020-2023 Stibo DX A/S Page 21

CUE Zipline User Guide

conversion-templates
This configuration option can be used to define a custom location for conversion templates for
this particular cue-print processor, if it requires templates that are different from the default
templates used by CUE Zipline.

The configuration options for this property are the same as for the corresponding property on
the global configuration level and are described in section 3.8.

product-mapping (required)
See section 3.10.1.1.

desk-mapping (required)
See section 3.10.1.2.

3.10.1.1 product-mapping

The product-mapping section of a cue-print processor performs two functions:

• It selects which incoming events will be handled, based on publication and content type

• It defines how to upload the content items referenced by these events, based on the same criteria

 product-mapping:
 - publication:
 - tomorrow-today
 - living-tomorrow
 content:
 - print
 - print-story
 assets:
 image:
 - picture
 - graphic
 - publication:
 - tomorrow-online
 content: []
 assets:
 image:
 - picture
 - graphic

The product-mapping section contains an array, each element of which contains the following
entries:

publication (required)
An array of publication names. Only content from these publications will be processed.

content (required)
An array of content type names. Only content of these types will processed. You should only
specify "text" content types here (i.e. stories not images, graphics, videos etc.)

assets (required)
Contains the asset type name image, which in turn contains an array of content type names.
You should only specify image/graphic content types here. In future versions of CUE Zipline,
other asset types such as videos, documents and spreadsheets may be supported.

If an event matches both a publication and a content entry in the same group, then the content
item it references will be converted to a CUE Print text and POSTed to the CUE Print server. If an
event matches both a publication and an assets entry in the same group, then the content item it

Copyright © 2020-2023 Stibo DX A/S Page 22

CUE Zipline User Guide

references will be converted to a CUE Print asset of the appropriate type and POSTed to the CUE Print
server. In the example shown above for example, print and print-story content items that belong
to either tomorrow-today or living-tomorrow will be POSTed to the CUE Print server as texts.
picture and graphic content items that belong to the same publications, however, will be POSTed
to the CUE Print server as image assets.

If the product mappings are the same for all publications, then the array may have only one entry (as
in the example shown above). If, however different groups of publications require different mappings,
then multiple entries will be needed.

3.10.1.2 desk-mapping

The desk-mapping section of a cue-print processor determines which CUE Print newsroom,
product and desk/subdesk a content item is sent to, based on its Content Store home section.

 desk-mapping:
 - newsrooms:
 tomorrow-today: Tomorrow
 living-tomorrow: Living
 products:
 tomorrow-today: TT
 living-tomorrow: Living
 desks:
 ece_frontpage:
 desk: Home
 layout: Frontpage
 news:
 desk: News
 layout: News
 politics:
 desk: News
 subdesk: Politics
 layout: News

The desk-mapping section contains an array, each element of which contains the following entries:

newsrooms (required)
One or more mappings from Content Store publication names (specified as YAML keys) to CUE
Print newsroom names (specified as values). In the example shown above, all content items
belonging to the Content Store tomorrow-today publication will be directed to the CUE Print
Tomorrow newsroom, and all content items belonging to the Content Store living-tomorrow
publication will be directed to the CUE Print Living newsroom.

content (required)
One or more mappings from Content Store publication names (specified as YAML keys) to
CUE Print product names (specified as values). In the example shown above, all content items
belonging to the Content Store tomorrow-today publication will be directed to the CUE
Print TT product, and all content items belonging to the Content Store living-tomorrow
publication will be directed to the CUE Print Living product.

desks (required)
One or more mappings from Content Store section unique names to CUE Print desk names,
layout names and optionally subdesk names. The mappings take advantage of standard
Content Store section inheritance rules. The first entry in the above example defines a default
mapping for all the sections in a Content Store publication. Content items that belong to the
root section (ece_frontpage) and all its subsections will be assigned to the CUE Print

Copyright © 2020-2023 Stibo DX A/S Page 23

CUE Zipline User Guide

Home desk and given a Frontpage layout. This mapping can, however, be overridden for
specific subsections. In the above example such overrides have been created for the news and
politics sections.

These override mappings are in turn inheritable and can also be overridden. Content items
that belong to the news section and all its subsections will be assigned to the CUE Print News
desk and given a News layout. Content items that belong to the politics section and all its
subsections will be assigned to the Politics subdesk of the News desk and given a News layout
in CUE Print.

If the desk mappings are the same for all publications, then the array may have only one entry (as in
the example shown above). If, however different groups of publications require different mappings,
then multiple entries will be needed.

3.10.2 dcx Processor

A dcx processor uploads the content items referenced by the events it receives to DC-X. A dcx
processor has the following properties:

 - type: dcx
 cache:
 max_size:
 cue_web:
 info:
 view:
 label: View
 link_text: Browse
 edit:
 label: Edit
 link_text: Open in CUE
 system-id:
 upload:

If you are using CUE Zipline to upload both binary assets and stories/storylines to DC-X, then
you need to define two separate processors, one to handle the binary assets and one to handle the
stories/storylines, since the configuration requirements are different in each case.

type must be set to dcx. The other entries are:

cache (optional)
May optionally be used to specify cache settings. Currently the only setting available is:

max-size (optional, default: 10000)
The maximum number of elements the upload cache may hold.

cue_web (required)
Must contain the CUE editor's endpoint URL.

system-id (optional)
May be used to identify the source system when attaching multiple CUE systems to a single
DC-X system. The expected value is a string, used by DC-X to identify the source CUE system.
The specified string is appended to DC-X assets' ContentStoreId field values (in the form asset-
id@system-id) and used to set the value of DC-X usage records' PROD_SYS_ID properties.

If this property is not specified, then the ID is read from the global
ZL_DCX_EXTERNAL_SYSTEM_ID environment variable. If this environment variable is not
set, then the global system-id specified as part of the Content Store endpoint definition (see

Copyright © 2020-2023 Stibo DX A/S Page 24

CUE Zipline User Guide

section 3.2) is used as a fallback. If no system-id is specified there either, then the default
system ID CUE is reported to DC-X.

upload (required)
See section 3.10.2.1.

3.10.2.1 upload

The upload property of a dcx processor serves two purposes:

• It selects which incoming events will be handled, based on publication, content type and state

• It specifies how the selected events are to be handled

 - filter:
 publications:
 - tomorrow-online
 content-types:
 - picture
 - graphic
 states:
 - approved
 - published
 content:
 folder: native

The upload property is an array, each element of which contains the following entries:

filter (optional, default: no additional filtering)
A DC-X-specific filter that works in exactly the same way as the global filter described in section
3.9. It performs additional filtering to select only those events that are to be handled by the DC-
X processor.

Note that if deleted is included the list of states, then whenever a matching content item is
deleted in the Content Store, it will also be deleted from DC-X.

content (required)
Contains a required tags property that defines the details of how content is uploaded to the
DC-X server, in the form of mappings between content item fields and DC-X tags. For details,
see section 3.10.2.1.1. If the content types to be uploaded are stories/storylines rather than
binary assets, then content may also contain an image-container property (see section
3.10.2.1.2).

folder (optional, default: story)
The name of an existing import folder in the DC-X system to which stories will be uploaded.
You are recommended to use the default folder name story, which exists in a standard DC-X
installation.

upload-configuration (optional, default: uploadconfig_cue_dam_generic)
The name of an existing upload configuration in the DC-X system to be used for
uploading binary assets. You are recommended to use the default configuration name
uploadconfig_cue_dam_generic, which exists in a standard DC-X installation.

document-type (required for story/storyline uploads, not used for binary asset
uploads)

The name of a document type defined in DC-X. Uploaded stories/storylines will be created as
documents of this type. This property is not used when uploading binary assets.

Copyright © 2020-2023 Stibo DX A/S Page 25

CUE Zipline User Guide

3.10.2.1.1 tags

The tag mappings specified in a tags property consist of:

• A name property identifying a DC-X tag

• A second property specifying how the DC-X tag is to be set

 tags:
 - name: Creator
 first-of:
 - field: byline
 - meta: author
 - meta: creator
 - name: Title
 meta: title
 - name: body
 template: >
 {%- raw %}
 <p>{{caption}}</p>
 {%- endraw %}
 context:
 - name: caption
 field: caption
 - name: Provider
 first-of:
 - field: credit
 - meta: organizational-unit

The following variations are possible:

• - name: Creator
 field: byline

Assign the value of the uploaded content item's byline field to the DC-X Creator tag.

• - name: Creator
 meta: creator

Assign the value of the uploaded content item's creator metadata field to the DC-X Creator tag.

• - name: Creator
 first-of:
 - field: byline
 - meta: author
 - meta: creator

Read the fields listed under first-of in the specified order. Use the first one that contains a value
to set the DC-X Creator tag.

• - name: body
 template: >
 <p>{{caption}}</p>
 context:
 - name: caption
 field: caption

Use the result of executing the specified Jinja2 template to set the DC-X body tag. The context
property can be used to define the variables that will be available to the template. These variables
can be assigned values in exactly the same way as values are assigned to DC-X tags. So in this

Copyright © 2020-2023 Stibo DX A/S Page 26

https://palletsprojects.com/p/jinja/

CUE Zipline User Guide

example, the {{caption}} variable will be replaced with the content of the uploaded content
item's caption field.

3.10.2.1.2 image-container

The image-container property is only used when uploading stories or storylines, and it is optional.
It is used to define the details of how images in stories/storylines are handled, in the form of mappings
between content item fields and DC-X image container tags. If no image-container property
is specified then the images are stored as related items of the story in DC-X. The tag mappings are
defined in exactly the same way as for uploaded binary assets (see section 3.10.2.1.1).

Here is an example image-container definition:

image-container:
 - content-type: picture
 tags:
 - name: ImageCaption
 first-of:
 - type: image
 field: caption
 - summary-field: caption
 - field: caption
 - content-type: graphic
 tags:
 first-of:
 - type: image
 field: caption
 - summary-field: caption
 - field: caption

3.10.3 newsml Processor

A newsml processor exports the content items referenced by the events it receives to NewsML
files (which may be used as input to external systems). A newsml processor definition contains the
following properties:

 - type: newsml
 filter:
 output:
 - type: file
 output_dir:
 encoding:
 file_name_template:
 download_dir:

type must be set to newsml. The other properties are:

filter (optional, default: no additional filtering)
A NewsML-specific filter that works in exactly the same way as the global filter described in
section 3.9. It performs additional filtering to select only those events that are to be handled by
the newsml processor.

output (optional, default: one type=file element with default settings)
An array, each element of which contains settings for a different output method. Currently,
however, only one output method is supported, so the array will never contain more than one
element.

Copyright © 2020-2023 Stibo DX A/S Page 27

CUE Zipline User Guide

type (required)
The only allowed value is file, indicating that the NewsML output will be written to file.

output_dir (optional, default: /var/backup/cue/zipline)
The absolute path of the folder to which output NewsML will be written.

encoding (optional, default: utf-8)
The encoding to be used in the output NewsML file (specified in its XML declaration).

file_name_template (optional, default: {{id}}.xml)
A Jinja2 template defining how the output NewsML files will be named. The following
properties are available for use in the templates:

id (content item ID)
year
month
day
hour
minute
second
micro

So a template setting such as {{year}}/{{month}}-{{day}}-{{id}}.xml would
result in file paths like this: 2020/06-30-9387.xml.

download_dir (optional, default: /tmp/cue/zipline/newsml)
The absolute path of the folder to which downloaded binary files will be written. (If an image
content item, for example, is selected and converted to NewsML format, then the image binary
file it references is downloaded to this folder.)

3.10.4 newsml-import Processor

The NewsML import processor is different from all the other processors in that it imports data into the
Content Store rather than exporting it, and is therefore not driven by Content Store events. Instead,
the NewsML import processor monitors specified import folders and imports any NewsML-G2 files
that appear in them.

 - type: newsml-import
 target:
 publication: tomorrow-online
 section: ece_incoming
 content-types:
 images: picture
 stories: story
 watch_dirs:
 - path: /var/spool/newsml/import
 files:
 - *.xml
 - *.ml
 download_dir: /tmp/cue/zipline/newsml

type must be set to newsml-import. The other entries are:

target (required)
Contains two properties specifying the publication name and section unique name to be used to
identify the home section of created content:

Copyright © 2020-2023 Stibo DX A/S Page 28

https://palletsprojects.com/p/jinja/
https://iptc.org/standards/newsml-g2/

CUE Zipline User Guide

publication (required)
The name of the publication to import into.

section (required)
The unique name of the section, in the targeted publication, to use as home section of the
imported content.

content-types (required)
Contains two properties specifying the content types to be used for importing content to the
target publication:

images (required)
The name of the content type to be used for importing images.

stories (required)
The name of the content type to be used for text content. Only storyline content types are
supported, not classic rich text-based content types.

watch_dirs (required)
An array, each element of which specifies a folder in which to look for NewsML files to import.
Each element may contain the following properties:

path (required)
The absolute path of a folder in which to look for NewsML files.

files (optional, default: *.xml)
An array of file name patterns to use when looking for files to import.

download_dir (optional, default: /tmp/cue/zipline/newsml)
The absolute path of a folder to be used by CUE Zipline to hold temporary files downloaded
from the Content Store during the import process.

3.10.5 External Processors

External processors are designed to allow implementation of custom event handlers for a project. The
implementation must be written in Python, but is otherwise unrestricted.

External processors are executed in an external process (outside the core Zipline process) to ensure
that any problems in the processor don't affect the core event processing done in CUE Zipline.

Unlike the internal processors provided by CUE Zipline, external processors do not have a type
property. The "external" type is implied.

However, a name property is required, and must be unique across all the configured external
processors.

The properties of an external processor are:

name (required)
Defines a name for the external processor. The name must be unique across all external
processors configured for this CUE Zipline cluster.

source (required)
The source property defines the event source configuration for this external processor. CUE
Zipline monitors this source for events and passes events on to the external processor.

Copyright © 2020-2023 Stibo DX A/S Page 29

CUE Zipline User Guide

filter (optional)
You can define a filter in order to reduce the number of events passed to the external processor.
The supported options for this filter are defined in section 3.9. If no filter is defined, then all
events from the configured content update change logs are passed to the external processor.

agent (required)
Must provide sufficient information about the external processor's event handler (the agent) for
CUE Zipline to be able to instantiate it and pass events to it.

It also includes a configuration object that is passed to the event handler during
initialization.

3.10.5.1 source

The source configuration object contains either an events property, which is a configuration object
that specifies the change logs to monitor for events, or a polling property, which is a configuration
object that identifies resource URLs to monitor for changes.

For backward compatibility reasons, if the source configuration object contains neither an events
property nor a polling property, then the properties of the source configuration object are parsed
as an events configuration, as described below.

3.10.5.1.1 events

The events configuration object contains information about the change log URLs to monitor and
authentication for those URLs.

urls (required)
The urls property is a list of CUE Content Store change log URLs that CUE Zipline should
monitor for events. Each URL in the list identifies a specific change log on the CUE Content
Store system.

Alternativlely, you can just add the CUE Content Store web service start URL to the list. In this
case, CUE Zipline will monitor all change logs accessible with the credentials supplied in the
auth property (see below).

types (optional)
When the urls property contains the CUE Content Store web service index page, this property
can be used to filter the type of change logs monitored.

The property is a list, where each entry is one of publication, person, section, or
publication-structural.

auth (required)
The auth configuration property defines the credentials used for accessing the change logs
defined in the urls list, and is described in section 3.10.5.2.

At the moment, only basic authentication is supported for monitoring change logs.

propagation
A set of propagation rules, one for each CUE Content Store object type that may be updated. A
rule defines:

• Whether or not related objects should be updated together with this object

• If so, which related objects should be updated

Copyright © 2020-2023 Stibo DX A/S Page 30

CUE Zipline User Guide

When a CUE Content Store object receives an update event, the external processor uses these
rules to find which related objects should also be updated, and passes the update event on to
those objects.

The object types that may be specified are represented by the following keywords:

article
container
inbox
list
list-pool
person
pool-entry
section
section-page

The following example specifies that if an active section page is updated, the update event will
be passed on to the section page's parent (that is, the section it belongs to). This rule thereby
ensures that a section is updated whenever its active section page is updated.

propagation:
 section-page:
 when:
 state: active
 relations:
 - parent

Propagation rules are applied recursively, so in the above case, updating the section page's
parent section would also trigger the processing of any section propagation rules that have
been specified. The external processor keeps track of all objects queued for updating and
ensures that no objects are updated more than once.

More than one propagation rule may be specified for a given object type (allowing different
relations to be updated when different conditions are satisfied).

Each propagation rule may contain the following properties:

when (optional)
Defines a set of conditions governing whether or not an update event is to be propagated
(passed on to related objects). An event is only propagated if all the specified conditions
are satisfied. If no when property is specified, then the event is always propagated.

The syntax and semantics of the when condition are described in section 3.9.

relations (required)
The relation types to follow when propagating an update event. If the when condition is
satisfied (or if no when condition has been specified) then the external processor follows
all links of the specified types and passes the targets of the links to the external event
handler.

The list of relation types can be specified either as a string containing a comma-separated
list of relation types or as a YAML/JSON array. For instance, the following two examples
are identical:

relations: home-section, container

relations:
 - home-section
 - container

Copyright © 2020-2023 Stibo DX A/S Page 31

CUE Zipline User Guide

The following relation type keywords may be specified:

changelog
container
container-item
content-items
home-section
lock
model
organizational-unit
parent
publication
storyline

The keywords correspond to selected link relation URLs used in Content Store web
service Atom resources (see Supported Relations).

3.10.5.1.2 polling

CUE Zipline is able to poll resource URLs at regular intervals and forward events to an external event
handler when the contents of the resource change.

Each time a resource URL is resolved, the value of the ETag header in the response is compared to the
previous value. If the value has changed, then the external processor is notified.

If the response doesn't contain an "ETag" header, then the resource contents are hashed and the event
handler is notified if the hash value changes.

The polling configuration object has the following properties:

urls (required)
A list of resource URLs to poll.

interval (required)
Properties defining the interval at which URLs are polled. Each URL listed in urls is polled at
this interval. If there are multiple URLs in the list, then polling of each URL is spread out over
the interval, to ensure that all the requests are not sent at the same time.

The interval properties are described below. Multiple properties can be combined. And at least
one non-zero value must be specified.

weeks (optional)
A floating point number indicating the number of weeks between polling each URL.

days (optional)
A floating point number indicating the number of days between polling each URL.

hours (optional)
A floating point number indicating the number of hours between polling each URL.

minutes (optional)
A floating point number indicating the number of minutes between polling each URL.

seconds (optional)
A floating point number indicating the number of seconds between polling each URL.

Copyright © 2020-2023 Stibo DX A/S Page 32

http://docs.escenic.com/ece-integration-guide/7.14/supported_relations.html

CUE Zipline User Guide

auth (optional)
The auth configuration property defines the authentication mechanism to use if authentication
is needed for polling the configured URLs.

For URL polling, both basic and oauth authentication is possible.

The configuration options for auth is described in section 3.10.5.2.

accept_duplicates (optional)
If the accept_duplicates property is set to "true", then all events for a resource are sent to
the event handler. The event handler is then responsible for ignoring duplicates if necessary.

By default, CUE Zipline ignores duplicate events that have already been processed successfully.

For example, a resource that is polled every 2 minutes but only changes every 10 minutes will
produce 5 events for the same resource value. If the first event is processed without error, then
the four subsequent events are ignored.

If an event for a given resource value results in an error, then subsequent events for that
resource are still forwarded to the event handler until one completes without error or the
resource value changes.

3.10.5.2 auth

The auth configuration object contains one of a set of supported properties (basic, oauth), which in
turn contain properties for authentication using that method.

3.10.5.2.1 basic

CUE Zipline can provide basic authentication when accessing CUE Content Store change logs or
polling URLs. The basic configuration object contains the properties needed for authenticating.

username (required)
The user name for accessing the target server.

password or password_file (required)
The password for accessing the target server.

As an alternative to providing the password in the configuration file, CUE Zipline supports
reading it from a file.

The password_file property should contain the path of a file, from which CUE Zipline will
read the first line as the password to use.

3.10.5.2.2 oauth

CUE Zipline supports the "client credentials" workflow of OAuth2 for authenticating when polling
URL resources.

The oauth configuration object contains the following properties:

token_url (required)
The token_url property contains the URL from which CUE Zipline can retrieve an
authorization token.

client_id (required)
The client_id property contains the client ID to use for authentication.

client_secret or client_secret_file (required)
The client_secret property contains the client secret to use for authentication.

Copyright © 2020-2023 Stibo DX A/S Page 33

CUE Zipline User Guide

As an alternative to providing the client secret in the configuration file, CUE Zipline supports
reading it from a file.

The client_secret_file property should then contain the path of a local file on the server
running CUE Zipline, from which CUE Zipline will read the first line as the client secret to use.

audience (required)
The audience property contains a value that identifies the resource CUE Zipline is trying to get
access to.

The value is provided as a parameter to the token_url and is typically provided by the OAuth2
server along with the client ID and secret.

3.11copyback
The copyback property contains configuration parameters for the CUE Zipline copy-back feature
that allows CUE Print users to copy small changes and additions made to packages back to their
source print storylines, or to create new content through ordering (see section 1.3). The configurations
specified here have two parts, fields and create, which handle updating and creating content
respectively.

fields only affect the copy-back feature's handling of asset metadata. When a new asset such as
an image is added to a package, or an existing asset is changed in some way and the CUE Print user
chooses to copy the change back to CUE then the copyback property determines what metadata is
copied back, and where it is copied to.

Each entry under create corresponds to a container name (as configured in CUE Print). Each
container name maps onto a container type, and has a set of field mappings both for the container and
content to be created. Additionally it is possible to specify the root template that should be used to
generate the storyline. The root template must be a jinja file in config/conversion-templates/
cue-print/cue-print-to-storyline.

copyback:
 # Picture content fields
 fields:
 - name: title
 value:
 - meta: filename
 - name: caption
 value:
 - attribute: CaptionText
 - attribute: IIM_Caption
 - name: byline
 value:
 - attribute: CaptionByline
 - attribute: IIM_Byline
 - name: credit
 value:
 - attribute: CaptionCredit
 - attribute: IIM_Credit
 # Field mappings for when copyback needs to create new content.
 create:
 # Container name as configured on cue-print
 - name: Regular News Story
 # Container type from content store
 type: regular-news-story

Copyright © 2020-2023 Stibo DX A/S Page 34

CUE Zipline User Guide

 # root template used for creating storyline
 root_template: storyline.jinja2
 container:
 # Container object fields
 fields:
 - name: com.escenic.container.slug
 value:
 - attribute: Name
 content:
 # Story content fields
 fields:
 - name: title
 value:
 - attribute: Name

copyback contains a fields and a create property.

fields is an array in which each element defines a mapping between a Content Store field and the
CUE Print attributes that can be used to fill it. Each element contains the following properties:

name (required)
The name of a content item field. If the target content item has a field with this name, then
value is used to set it.

value (required)
An array of possible sources in the CUE Print asset from which the name field can be filled. The
sources are tried in order, and the first one that contains a value is used. Two types of source are
possible:

attribute (required)
The name of a CUE Print attribute.

meta (required)
An item of metadata extracted from the asset itself (an image file for example). Currently
the only value that may be specified here is filename. It means the name of the asset file
(name only, no path).

create is an array in which each element corresponds to a container type, that can be targeted for
creating new content. Each element contains the following properties:

name (required)
The name of the container. This is a name configured in CUE Print.

type (required)
The container type. This is the unique name of the container resource as defined in the Content
Store.

root_template (optional)
The Jinja file used as the root template for the storyline. The default value is
storyline.jinja2.

container (required)
A configuration for the container to be created.

fields (required)
An array defining field mappings between CUE Print and Content Store fields. It works in
exactly the same way as the fields array defined under copyback.

Copyright © 2020-2023 Stibo DX A/S Page 35

CUE Zipline User Guide

content (required)
A configuration for the content to be created.

fields (required)
An array defining field mappings between CUE Print and Content Store fields. It works in
exactly the same way as the fields array defined under copyback.

3.12dcx-converters
dcx-converters contains a single property, wire/target, that specifies how a DC-X Wire story is
converted into a CUE Content Store story given the publication, container and content-type.

dcx-converters:
 wire:
 target:
 publications:
 - text: Tomorrow Online
 value: tomorrow-online
 containers:
 - text: Regular News Story
 value: regular-news-story
 fields:
 - name: Headline
 meta: com.escenic.container.slug
 content-types:
 - text: Storyline
 value: storyline
 fields:
 - name: Headline
 meta: title
 template-uri: dcx/wire/wire-to-storyline/storyline.jinja2
 binary-relation-group: relations
 binary-content-types:
 - text: Picture
 value: picture
 fields:
 - name: ImageCaption
 meta: caption
 - name: _display_title
 meta: title
 content-duplication:
 allowed-for:
 - tomorrow-sport

containers (required)
List of containers inside the given publication that can be the destination of the converted story.

fields (optional)
List of field mapping between the DC-X story and the container.

content-types (required)
List of content-types inside the given publication that can be the destination of the converted
story.

fields (optional)
List of field mapping between the DC-X story and the content type.

Copyright © 2020-2023 Stibo DX A/S Page 36

CUE Zipline User Guide

template-uri (required)
Path to template file that maps a DC-X story to a CUE Content Store story

binary-relation-group (optional)
The relation group to use when linking binary assets to the CUE Content Store story

binary-content-types (optional)
List of field mapping for binary content that is linked to the destination story.

content-duplication (optional)
If specified, contains a single allowed-for property containing a list of publications in which
wire stories belonging to this publication may be duplicated. For further information, see section
3.12.1.

3.12.1 Content Duplication

By default, CUE Zipline will not re-import a wire story that already exists somewhere in the Content
Store. It returns the URI of the existing story to CUE instead.

The content-duplication configuration object lets you modify this behavior and allow duplication of
wire stories in some circumstances, by specifying

duplication rules for some or all of your publications as follows:

publications:
- text: Tomorrow Online
 value: tomorrow-online
 content-duplication:
 allowed-for:
 - tomorrow-sport

The above configuration means that if CUE Zipline has received a request to import a wire story to
tomorrow-sport that has already been imported to the tomorrow-online publication, then it
should create a duplicate. If it is importing the story to any other publication, however, then it should
not create a duplicate, and return the URI of the existing tomorrow-online story to CUE instead.

You can include the names of multiple publications under the allowed-for property if required, for
example:

publications:
- text: Tomorrow Online
 value: tomorrow-online
 content-duplication:
 allowed-for:
 - tomorrow-sport
 - living-online

You can also use a wild card to allow duplication for all publications except the current one:

publications:
- text: Tomorrow Online
 value: tomorrow-online
 content-duplication:
 allowed-for:
 - "*"

Copyright © 2020-2023 Stibo DX A/S Page 37

CUE Zipline User Guide

This means that if you are importing to any publication except tomorrow-online itself, then
duplication is allowed. If you want to allow duplication of tomorrow-online wire stories in
tomorrow-online itself, then you must add an explicit entry for that as well:

publications:
- text: Tomorrow Online
 value: tomorrow-online
 content-duplication:
 allowed-for:
 - "*"
 - tomorrow-online

If duplication is enabled for any publications at an installation, then the Content Store may contain
several copies of some wire stories. This means that when CUE Zipline is importing a wire story in
a context where duplication is not allowed, it may have several existing copies of the wire story to
choose from. In such cases, CUE Zipline will choose a copy belonging to the target publication itself, if
one exists. Otherwise it will just choose any copy.

3.13audit
The audit property is used to configure CUE Zipline's audit trail feature, which writes a record of all
actions performed to a log file. This log file is produced specifically for audit purposes and is separate
from the diagnostic log produced by the general error logging feature (see section 3.6). audit contains
a single property, logging. Under this is a standard Python logging configuration as described here.

audit:
 logging:
 formatters:
 minimal:
 format: '%(asctime)s - %(message)s'
 handlers:
 file:
 class: logging.handlers.RotatingFileHandler
 level: DEBUG
 formatter: minimal
 filename: /var/log/zipline/zipline-audit.log
 maxBytes: 1073741824
 backupCount: 5
 encoding: UTF-8
 root:
 level: INFO
 handlers:
 - file

3.14cluster
The cluster property is used to configure a CUE Zipline cluster. It describes the members of the
cluster and how they communicate. Clustering is optional. If you only intend to run a single instance
of CUE Zipline then the cluster property can be omitted. If you do intend to run a cluster, then
each CUE Zipline instance in the cluster must have a similar (but not identical) cluster property
definition. In a cluster of two, for example, the instances might have the following cluster definitions:

Copyright © 2020-2023 Stibo DX A/S Page 38

https://docs.python.org/3.6/library/logging.config.html#dictionary-schema-details

CUE Zipline User Guide

cluster:
 instance_id: zipline01
 instance_name: Zipline 1
 listen_address: 0.0.0.0:12790
 members:
 - zipline1.myproject.com:12790,zipline2.myproject.com:12790
 - zipline1.myproject.com:12790,zipline2.myproject.com:12790

and:

cluster:
 instance_id: zipline02
 instance_name: Zipline 2
 listen_address: 0.0.0.0:12790
 members:
 - zipline1.myproject.com:12790,zipline2.myproject.com:12790
 - zipline1.myproject.com:12790,zipline2.myproject.com:12790

instance_id (optional)
The internal ID of this CUE Zipline instance. The ID must be unique within the cluster. If not
specified then it is set to the value of the ZL_CLUSTER_INSTANCE_ID environment variable. If
ZL_CLUSTER_INSTANCE_ID is not set, then it is set to an automatically assigned UUID.

instance_name (optional)
A descriptive name for the cluster instance. If not specified then it is set to the value of the
ZL_CLUSTER_INSTANCE_NAME environment variable. If ZL_CLUSTER_INSTANCE_NAME is
not set, then it is set to the name of the host.

listen_address (optional)
The network address and port number to listen on for internal communication between
CUE Zipline instances. The network address and port number must be accessible
to all other instances in the cluster. If not specified then it is set to the value of the
ZL_CLUSTER_LISTEN_ADDRESS environment variable. If ZL_CLUSTER_LISTEN_ADDRESS
is not set, then it is set to 0.0.0.0:12790, which means "listen on port 12790, on all the host's
network interfaces".

members (optional)
An array containing the network address and port number of each instance in the cluster. If
not specified then it is set to the value of the ZL_CLUSTER_MEMBERS environment variable. If
ZL_CLUSTER_MEMBERS is not set, then it is set to an empty array.

The value of ZL_CLUSTER_MEMBERS must be a comma-separated list of entries. For example:
zipline1.myproject.com:12790,zipline2.myproject.com:12790.

If members is undefined or left as an empty array, then CUE Zipline will run as a single instance
(always active).

3.15monitoring
The monitoring property is used to configure the monitoring endpoint.

default_range (optional)
Defines the default time period for monitoring reports. This default is used for:

• On-demand reports, where the submitted request does not include a period parameter (see
section 10.1).

Copyright © 2020-2023 Stibo DX A/S Page 39

CUE Zipline User Guide

• Automated reports written to the CUE Zipline log file.

You may specify a single time period only, specified in either hours ("24h"), minutes ("30m"),
or seconds ("60s").

If no default_range and no period request parameter is specified, then the internal default
time of 15 minutes is used.

log_interval (optional)
Defines the interval between the automatically generated status reports that are written to the
CUE Zipline log file. The interval can be specified in in either hours ("24h"), minutes ("30m"),
or seconds ("60s"). You can disable the automatic generation of status reports by entering
"none".

If not specified then it is set to the value of the ZL_MONITORING_LOG_INTERVAL environment
variable. If ZL_MONITORING_LOG_INTERVAL is not set, then automatic reports are generated
every 15 minutes.

3.16CUE Print Asset Mapping
Mapping of assets in CUE Content Store is controlled based on configuration files in the /etc/cue/
zipline/asset-mapping folder.

When mapping a content item, CUE Zipline will look for configuration files in this folder, based on the
content type and/or the name of the publication owning the content item.

CUE Zipline will load configuration files from the folder based on a naming scheme. The supported
schemes are (in order, from highest to lowest priority):

<publication-name>.<content-type-name>.config.yaml
Files with this naming pattern contain mapping configurations for a specific content type
in a specific publication. For instance, to configure the mapping for the "storyline" content
type in the "tomorrow-online" publication, create a mapping in a file named tomorrow-
online.storyline.config.yaml.

<publication-name>.config.yaml
Files with this naming pattern contain mapping configurations for all the content types in a
publication. For instance, configurations in a file named tomorrow-online.config.yaml
will apply to all content types in the "tomorrow-online" publication.

<content-type>.config.yaml
Files using this naming scheme contain mapping configurations for a specific content type,
regardless of which publication it is in. For instance, the file storyline.config.yaml,
contains general configuration settings for content items of the type "storyline" in any
publication.

config.yaml
This is the most generic mapping configuration. It applies to all content types in all publications,
but is overridden by configurations in any of the other more specific files.

Each configuration must contain a single configuration object, defining the following properties:

type
Defines the type of conversion to use for the content item being processed. The valid values are:

Copyright © 2020-2023 Stibo DX A/S Page 40

CUE Zipline User Guide

text
Maps the content item to CUE Print, using the templates for text conversion in the text
sub-folder of the storyline-to-cue-print template folder.

image
Maps the content item to CUE Print by transferring image (or graphics) data and
converting the image caption using templates in the image sub-folder.

attributes
Defines the mapping of attributes from the CUE Content Store content item to the target CUE
Print object. The list of target attributes is currently limited, based on the target object type.

The property must contain a list of mapping definitions, as described in section 3.17.

template_vars
Defines the mapping of attributes from the CUE Content Store content item to be used in the
jinja template for the target CUE Print object. The attributes mapped can be accessed in the jinja
template as template_vars

The template_vars mapping is currently only available for storylines.

The property must contain a list of mapping definitions, as described in section 3.17.

3.17Mapping Attributes
There are several places in the CUE Zipline configuration where there's a need for mapping attributes
from a CUE storyline to fields/attributes of an external system.

These mappings share a common format, which is a list of definitions, each providing the target field
(or attribute) name and the source of the field contents. The target definition contains just the name of
the target field or attribute:

name (required)
Defines the name of the target attribute or field.

The source definition is identified by one of the following properties, possibly with additional
properties, as described below.

context (optional)
The value of the context property is used to define the source object that should be used when
retrieving the value.

Possible context values:

authors
Every author in the story. Result will be an array of values.

profiles
Every author profile of the person. Specifically the relations marked with the
metadata:group="com.escenic.profiles" attribute. Result will be an array of
values.

container
The container of the story.

creator
The person that created the story.

Copyright © 2020-2023 Stibo DX A/S Page 41

CUE Zipline User Guide

home-section
The home section in the story.

operator
The person that last changed the story.

publication
The publication of the story.

sections
Every section in the story. Result will be an array of values.

feature (optional)
The value of the feature property is used as the name of a publication feature, the value of
which is used as the contents of the target field/attribute.

The feature property is only available in attribute mappings for internal processors. Not for
mappings defined in external event processors.

field (optional)
If a definition entry contains a field property, but no type property, then it's interpreted as a
mapping from a content item field.

The value of the content item field is extracted as a string and used as the value of the target
field/attribute.

meta (optional)
Maps a meta-data attribute of the object being processed, as described in the section section
3.17.1.

type (optional)
The type property identifies the first element of a given type in a storyline. The required field
property, in the same mapping definition, then identifies a field in that element. The value of
that field is then used as the value of the mapping target.

For instance, the following mapping definition, extracts the value of the "caption" field in the
first "image" storyline element as the value of the "caption" target attribute:

- name: caption
 type: image
 field: caption

summary-field (optional)
Sets the target attribute to the value of the summary field of a relation with the field name
matching the value of this property.

template (optional)
Renders the target field contents from a template provided inline in the configuration. See
section 3.17.2 below.

template-uri (optional)
Like template, but the template is read from a file.

first-of (optional)
Defines a list of possible values, trying each one, in order, until a non-empty value is found. The
value of the property is a list of source definitions.

For example, the following mapping will fill the "target" field with the contents of the "caption"
field of the "image" storyline element if non-empty and otherwise use the "caption" field of the
content item:

- name: target

Copyright © 2020-2023 Stibo DX A/S Page 42

CUE Zipline User Guide

 first-of:
 - type: image
 field: caption
 - field: caption

For backward compatibility reasons, element can be used as the property name as well.

static (optional)
Sets the target attribute to the configured value. For instance the following configuration will set
the field called target to the value "Approved".

- name: target
 static: Approved

object (optional)
Sets the target attribute to an indexed array of multiple source values. It should contain a list of
source attribute definitions. The following configuration will set two properties in the target.

"value" to the content of the story creator's title property

"email" to the content of the story creator's email field.

- name: target
 object:
 - name: value
 meta: title
 - name: email
 field: com.escenic.emailAddress
 context: creator

In addition to the target and source properties, the mapping definition may contain a mapping
property, defining a simple lookup table, changing the source value into something else.

mapping (optional)
The mapping property contains a set of "from" and "to" values, in the form of a dictionary.

For instance, the following mapping will change the state "writing" to "ToWriting", "copy-
editing" to "ToCopyEditing", and "ready" to "Ready" befory applying the value to the
"WorkFlowGroupName" target attribute:

- name: WorkFlowMailGroupName
 meta: state
 mapping:
 writing: ToWriting
 copy-editing: ToCopyEditing
 ready: Ready

3.17.1 Meta Attributes

Meta attributes identifies information about the content item that are not contained in fields or as part
of the storyline. The possible values are:

author
Extracts the full name of the first author listed in the content item and uses that as the value of
the target field.

authors
Extracts the full name of all authors listed in the content item and supplies that as a list of values
for the target field.

Copyright © 2020-2023 Stibo DX A/S Page 43

CUE Zipline User Guide

container-url
The container's Content Store URL. Resolving this URL will provide a XML structure describing
the container object.

content-url
Identifies the web-site URL of a published content item (or section). There's no value if the
content item isn't published and, in this case, the field/attribute will not be set on the target
object.

cook-url
Resolves to the updated item's Cook URL. Resolving this URL will provide a JSON structure
describing the content object from CUE Front's Cook.

Mapping of this attribute requires configuring a dpres_cook endpoint defining the base URL
of the CUE Front Cook, as described in section 3.2.

creation-date
Extracts the creation date of the content item and uses that as the value of the target field.

creation-date
Extracts the creation date of the content item and uses that as the value of the target field.

creator
Extracts the full name of the user listed as the creator in the content item and uses that as the
value of the target field.

home-section
Extracts the full name of the home section in the content item and uses that as the value of the
target field.

home-section-url
The home section's Content Store URL. Resolving this URL will provide an XML structure
describing the home section object.

id
Uses the CUE Content Store id (resource URL) of the content item as the value of the target
attribute.

local-origin-url
Identifies the local base variant of the content item and uses its web-site URL as the value of the
mapping target.

The local base variant is identified as the first variant in the same organizational unit as the
content item being mapped.

If the content item being mapped is the local base variant, then this is identical to a mapping of
the content-url.

The local-origin-url property is only available in attribute mappings for internal
processors. Not for mappings defined in external event processors.

operator
Extracts the full name of the user listed as last-edited-by in the content item and uses that
as the value of the target field.

origin-url
Identifies the base variant of the content item and uses its web-site URL as the value of the
mapping target.

The base variant is identified as the first variant in the same container as the content item being
mapped.

Copyright © 2020-2023 Stibo DX A/S Page 44

CUE Zipline User Guide

If the content item being mapped is the base variant, then this is identical to a mapping of the
content-url.

The origin-url property is only available in attribute mappings for internal processors. Not
for mappings defined in external event processors.

ou/organizational-unit
Extracts the name of the content item's organizational unit and uses that as the target value.

publication
Uses the name of the content item's owner publication as the value of the target field.

publish-date
Extracts the publication date of the content item and uses that as the value of the target field.

sections
Extracts the name of all sections listed in the content item and supplies that as a list of values for
the target field.

source
Uses the source attribute of the content item as the value of the target attribute.

source-id
Uses the source id attribute of the content item as the value of the target attribute.

state
Uses the workflow state of the content item as the value of the target attribute.

summary
Extracts the value of the content item's summary attribute and uses that as the target value.

title
Extracts the value of the content item's title attribute and uses that as the target value.

type
The type meta-data attribute will set the target field/attribute to a string containing an object
type name.

The possible object type names are:

article
container
inbox
list
list-pool
person
pool-entry
section
section-page

storyline
The storyline mapping is a special mapping useful in the context of a template mapping
definition. It extracts the storyline into the context of the template. It's not useful as a general
mapping.

3.17.2 Templates

A target field or attribute can be filled with the result of rendering a template. As all templates used in
CUE Zipline, field mapping templates are based on Jinja2.

Copyright © 2020-2023 Stibo DX A/S Page 45

https://palletsprojects.com/p/jinja/

CUE Zipline User Guide

The template can either be provided inline, using the template property, or in a separate file, using
the template-uri property.

The template is executed with a context that defines the variables available to the template. The
context is defined using a template-vars property, which contains a list of mapping definitions.

For instance, the following mapping will render the contents of a "byline" target attribute from a
template using the author name as a context variable:

- name: byline
 template: "By {{ author_name }}"
 template-vars:
 - name: author_name
 meta: author

Templates can be loaded from a file, instead of being provided inline. For this, use the template-uri
property and set it to the path of the template file.

3.18locations
The locations object provides a convenient mechanism for including parts of the CUE Zipline
configuration from files stored in other locations. Currently it may contain only one property,
processors:

locations:
 processors: ./processors.d

The processors property must be set to the path of a folder containing one or more .yaml files. The
path must be specified relative to the location of the configuration file. Each .yaml file in the folder
must contain the definition of one or more processors (as defined in section 3.10). Files that contain
more than one processor definition must separate the definitions using the .yaml --- syntax – that
is, each processor definition must be preceded by a line containing three hyphens:

The primary purpose of the locations property is to simplify the installation of CUE Zipline plugins.
When a plug-in is installed, it adds sample processor configurations to the /etc/cue/zipline/
processors.d folder, where they will be automatically detected and loaded the next time CUE
Zipline is loaded. This means that installing a plugin generally involves only running the install
command and then editing the configuration file added to the /etc/cue/zipline/processors.d
folder.

3.19Environment Variables
This section describes a number of environment variables that can affect the configuration. For some
settings, this can be used as an alternative to customising a common configuration file.

Some settings are only configurable using environment variables, as they are not expected to need
configuration under normal circumstances.

Copyright © 2020-2023 Stibo DX A/S Page 46

CUE Zipline User Guide

At startup, CUE Zipline will search the working directory for a file named zipline.env and load any
environment variables from that file that are not already defined in the system environment.

If no such file is found in the working directory, the application will search successive parent
directories for the file, until the root directory has been tried.

If no zipline.env file is found, CUE Zipline tries looking for a file named .env, using the same
strategy.

CA_BUNDLE_PATH
CURL_CA_BUNDLE

The path of a certificate bundle that includes any custom CA certificates used to generate self-
signed certificates for TLS.

For more information, see section 2.5.

ZL_CLUSTER_INSTANCE_ID
An internal ID of this instance in the Zipline cluster. If a value is configured in the
cluster.instance_id property of the CUE Zipline configuration file, as described in section
3.14, then it supersedes the value of this environment variable.

ZL_CLUSTER_INSTANCE_NAME
A descriptive name for this instance in the Zipline cluster. If a value is configured in the
cluster.instance_name property of the CUE Zipline configuration file, as described in
section 3.14, then it supersedes the value of this environment variable.

ZL_CLUSTER_LISTEN_ADDRESS
The network address used for internal communication between instances in the cluster.
If a value is configured in the cluster.listen_address property of the CUE Zipline
configuration file, as described in section 3.14, then it supersedes the value of this environment
variable.

ZL_CLUSTER_MEMBERS
A comma-separated list of network addresses of cluster members. If a value is configured in the
cluster.members property of the CUE Zipline configuration file, as described in section 3.14,
then it supersedes the value of this environment variable.

ZL_SERVER_ADDRESS
The network interface where CUE Zipline will listen for requests from the CUE editor. If a
value is configured in the server.address property of the CUE Zipline configuration file, as
described in section 3.4, then it supersedes the value of this environment variable.

ZL_SERVER_PORT
The network port where CUE Zipline will listen for requests from the CUE editor. If a value is
configured in the server.port property of the CUE Zipline configuration file, as described in
section 3.4, then it supersedes the value of this environment variable.

ZL_SERVER_CONTEXT_PATH
The application context path used for CUE Zipline. If a value is configured in the
server.context-path property of the CUE Zipline configuration file, as described in section
3.4, then it supersedes the value of this environment variable.

ZL_EVENT_LISTENER_PROGRESS_PATH
The path of a file used to hold progess state for CUE Zipline between restarts. If a value
is configured in the event_listener.progress_path property of the CUE Zipline
configuration file, as described in section 3.3, then it supersedes the value of this environment
variable.

Copyright © 2020-2023 Stibo DX A/S Page 47

CUE Zipline User Guide

ZL_EVENT_HANDLING_MAX_DELAY
The allowed interval (in seconds) between the receipt of an event notification from the CUE
Content Store and the processing of that event by CUE Zipline.

If it takes longer than this, CUE Zipline will emit a warning in the log file.

The default value is 20 seconds.

ZL_CHANGE_LOG_SECS_BETWEEN_READS
The minimum number of seconds between reading a CUE Zipline change-log to check for
updates. If update notifications are received faster than this, processing of those notifications
will be delayed until the configured number of seconds have passed since last reading the
change-log.

The default value is 1 (one) second.

ZL_CHANGE_LOG_POLL_INTERVAL
The minimum number of seconds between CUE Zipline polling the CUE Zipline change-logs for
updates, if no update notifications have been received.

In general, polling should not be necessary because CUE Zipline receives update notifications
from CUE Zipline using SSE, so this property should be set to a very high value.

The default value is 600 seconds (that is, 10 minutes).

ZL_CUE_CS_EXTERNAL_SYSTEM_ID
A common system name for the CUE Zipline system, used to differentiate external IDs of
content when connecting multiple CUE Zipline systems to one CUE Print or DC-X system.

If a value for this system name is configured in the endpoints.content_store.system-id
property of the CUE Zipline configuration file, then it supersedes the value of this environment
variable.

ZL_CUE_PRINT_EXTERNAL_SYSTEM_ID
A custom system name for the CUE Zipline system, used to differentiate external IDs of content
when connecting multiple CUE Zipline systems to one CUE Print system.

If a value for this system name is configured in the system-id property of a CUE Print
processor in the CUE Zipline configuration file, then it supersedes the value of this environment
variable.

ZL_DCX_EXTERNAL_SYSTEM_ID
A custom system name for the CUE Zipline system, used to differentiate external IDs of content
when connecting multiple CUE Zipline systems to one DC-X system.

If a value for this system name is configured in the system-id property of a DC-X related
processor in the CUE Zipline configuration file, then it supersedes the value of this environment
variable.

ZL_MONITORING_LOG_INTERVAL
The interval between automatically generates status reports. If a value is configured in the
monitoring.log_interval property of the CUE Zipline configuration file, as described in
section 3.15, then it supersedes the value of this environment variable.

ZL_AUDIT_LOG_GRACE_PERIOD
Defines the number of seconds the active instance in a cluster keeps internal events around after
they have been distributed to inactive instances.

This allows instances to be away for this many seconds (e.g., during a restart) without the need
to apply the entire state of the audit log when the instance re-appears.

The default value is 300 (that is, 5 minutes).

Copyright © 2020-2023 Stibo DX A/S Page 48

CUE Zipline User Guide

ZL_AUDIT_LOG_TIMEOUT_ACK
The number of seconds to wait for a passive instance to acknowledge events sent to it. Increase
this number only if the latency between instances is very large, causing a round-trip to last more
than the default value.

The default value is 1.0 (that is, 1 second).

ZL_AUDIT_LOG_TIMEOUT_HEARTBEAT
The number of seconds between sending heartbeats to passive instances.

By default, the active instance will regularly send a heartbeat to each passive instance to
propagate the internal events across the cluster.

If this timeout value is increased, then the maximum delay between registering events on the
active instance and the passive instances is increased as well.

The default value is 2.0 (that is, 2 seconds).

Copyright © 2020-2023 Stibo DX A/S Page 49

CUE Zipline User Guide

4 Conversion Templates

CUE Content Store, CUE Print and DC-X are all highly flexible system that allow documents and data
structures to be customized in various ways. CUE Zipline makes frequent use of templates in order
to be able to deal with this flexibility – most of the data transformations performed by CUE Zipline
use templates to help generate correctly formatted output. A set of standard templates are supplied
with CUE Zipline. These will work at many installations, but they may not produce exactly the desired
results: they may not, for example include custom fields in converted content. In other cases, the
supplied templates may not work at all.

In most cases, some template modifications will need to be carried out to produce the desired results.

CUE Zipline uses the Jinja2 template processor. The Jinja2 templates are all intended to export CUE
storylines to some external target format, or else to import from some external format into CUE.
All the external target/source formats are XML formats of one kind or another, with a hierarchical
internal structure. The storyline data that CUE Zipline retrieves from the Content Store, on the other
hand is JSON data, and has a more or less flat internal structure. All the story elements in the storyline
are listed in a single storyElements array, and the relationships between them are specified
indirectly (see section 4.1.1 for an example).

Converting between this kind of flat data structure and the hierarchical external structures is not
easy to do using a templating language such as Jinja2. In order to simplify the process, therefore,
CUE Zipline provides a built-in converter that converts between the internal storyline format and an
intermediate format called the pseudo-storyline format. A pseudo-storyline is still a JSON data
structure, but it has a hierarchical structure similar to the various external formats. The supplied
templates are therefore designed to convert between the pseudo-storyline format and various external
formats.

All the templates are located in the /etc/conf/conversion-templates folder by default. This
folder contains the following template subfolders:

cue-print/storyline-to-cue-print
This folder contains templates for converting CUE pseudo-storylines into CUE Print texts. These
templates are used by the section 1.1 conversion and for generating print previews (see section
1.5). You may need to modify them to achieve the desired results with your content types.

cue-print/cue-print-to-storyline
This folder contains templates for converting CUE Print texts into CUE pseudo-storylines. These
templates are used by the section 1.3 conversion. You may need to modify them to achieve the
desired results with your content types.

newsmlg2/storyline-to-newsmlg2
This folder contains templates for converting CUE pseudo-storylines into NewsML files. You
may need to modify them to achieve the desired results with your content types.

newsmlg2/newsmlg2-to-storyline
This folder contains templates for converting NewsML files into CUE pseudo-storylines. You
may need to modify them to achieve the desired results with your content types.

classic
This folder contains templates for converting classic (rich text based) content items into CUE
pseudo-storylines (classic-to-storyline) and vice-versa (storyline-to-classic).

Copyright © 2020-2023 Stibo DX A/S Page 50

https://palletsprojects.com/p/jinja/

CUE Zipline User Guide

These templates are used by the section 1.6. You can both modify these standard templates and/
or add additional sets of templates to be used for converting different types of content.

dcx/wire/wire-to-storyline
This folder contains templates for converting DC-X stories into CUE pseudo-storylines. You may
need to modify them to achieve the desired results with your content types.

4.1 A Templating Example
This section provides a detailed description of the various components involved in exporting a simple
test storyline to CUE Print. Following this example should help to give you a general understanding
of how the conversion process works, enabling you to extend and modify the supplied templates, and
create templates of your own. It is assumed that you have a general understanding of how templating
systems work, and a basic acquaintance with Jinja2.

Our example storyline looks like this in CUE:

It consists, then of a headline, followed by a paragraph, a bulleted list and a second paragraph. The
first paragraph contains some bold (that is, annotated) text and the bulleted list contains a sublist, also
bulleted.

4.1.1 The Storyline JSON Structure

When CUE Zipline retrieves the print variant of this storyline from the Content Store web service, it is
supplied in the form of a JSON structure like this:

{
 "storyline": {
 "id": "5b3251f0-33ba-11eb-b23d-5b6ae38640b0",
 "version": "1",
 "sourceId": "c9fb7ff2-6e3c-42c0-8c79-40c817bd90f4",
 "model": "https://my-content-store/webservice/escenic/shared/model/storyline-
template/print",
 "inheritedFrom": "https://ece-cue-unstable-nightly.cci.cue.cloud/webservice/
escenic/storyline/ad9c82a8-3314-11eb-b23d-5b6ae38640b0",
 "elements": ["/storyElements/1","/storyElements/2","/storyElements/3","/
storyElements/4","/storyElements/5"]
 },
 "storyElements": {
 "1": {
 "model": "https://my-content-store/webservice/escenic/shared/model/story-
element-type/print_head",
 "fields": [],

Copyright © 2020-2023 Stibo DX A/S Page 51

CUE Zipline User Guide

 "elements": ["/storyElements/6"]
 },
 "2": {
 "model": "https://my-content-store/webservice/escenic/shared/model/story-
element-type/print_head_deck",
 "fields": []
 },
 "3": {
 "model": "https://my-content-store/webservice/escenic/shared/model/story-
element-type/print_body",
 "fields": [],
 "elements": ["/storyElements/7","/storyElements/8","/storyElements/9"]
 },
 "4": {
 "model": "https://my-content-store/webservice/escenic/shared/model/story-
element-type/print_assets",
 "fields": []
 },
 "5": {
 "model": "https://my-content-store/webservice/escenic/shared/model/story-
element-type/print_quote",
 "fields": []
 },
 "6": {
 "model": "https://my-content-store/webservice/escenic/shared/model/story-
element-type/headline",
 "fields": [
 {
 "name": "headline",
 "value": "My Bullet Test",
 "annotations": []
 }
]
 },
 "7": {
 "model": "https://my-content-store/webservice/escenic/shared/model/story-
element-type/paragraph",
 "fields": [
 {
 "name": "paragraph",
 "value": "Here is an introductory paragraph, followed by a list:",
 "annotations": [
 {
 "index": 24,
 "length": 9,
 "name": "bold",
 "value": true
 }
]
 }
]
 },
 "8": {
 "model": "https://my-content-store/webservice/escenic/shared/model/story-
element-type/list_bulleted",
 "fields": [],
 "elements": ["/storyElements/10","/storyElements/11","/storyElements/12","/
storyElements/13"]
 },
 "9": {

Copyright © 2020-2023 Stibo DX A/S Page 52

CUE Zipline User Guide

 "model": "https://my-content-store/webservice/escenic/shared/model/story-
element-type/paragraph",
 "fields": [
 {
 "name": "paragraph",
 "value": "Concluding paragraph.",
 "annotations": []
 }
]
 },
 "10": {
 "model": "https://my-content-store/webservice/escenic/shared/model/story-
element-type/paragraph",
 "fields": [
 {
 "name": "paragraph",
 "value": "Item one",
 "annotations": []
 }
]
 },
 "11": {
 "model": "https://my-content-store/webservice/escenic/shared/model/story-
element-type/paragraph",
 "fields": [
 {
 "name": "paragraph",
 "value": "Item two",
 "annotations": []
 }
]
 },
 "12": {
 "model": "https://my-content-store/webservice/escenic/shared/model/story-
element-type/list_bulleted",
 "fields": [],
 "elements": ["/storyElements/14","/storyElements/15"]
 },
 "13": {
 "model": "https://my-content-store/webservice/escenic/shared/model/story-
element-type/paragraph",
 "fields": [
 {
 "name": "paragraph",
 "value": "Item three",
 "annotations": []
 }
]
 },
 "14": {
 "model": "https://my-content-store/webservice/escenic/shared/model/story-
element-type/paragraph",
 "fields": [
 {
 "name": "paragraph",
 "value": "Nested one",
 "annotations": []
 }
]
 },

Copyright © 2020-2023 Stibo DX A/S Page 53

CUE Zipline User Guide

 "15": {
 "model": "https://my-content-store/webservice/escenic/shared/model/story-
element-type/paragraph",
 "fields": [
 {
 "name": "paragraph",
 "value": "Nested two",
 "annotations": []
 }
]
 }
 }
}

The above structure has been simplified to improve legibility: the actual data returned by the web
service will contain some additional URLs, IDs and so on that are not relevant for our purposes.

4.1.2 The Target CUE Print Structure

In order to be able to import the storyline into CUE Print, the storyline JSON data needs to be
transformed into an XML document that looks like this:

<cci:ccitext xmlns:cci="urn:schemas-ccieurope.com" xmlns:ccix="http://
www.ccieurope.com/xmlns/ccimlextensions">
 <cci:head>
 <cci:p>My Bullet Test</cci:p>
 </cci:head>
 <cci:head_deck/>
 <cci:body>
 <cci:p>Here is an introductory <cci:bold>paragraph</cci:bold>, followed by a
 list:</cci:p>
 <cci:bullet_list>
 <cci:p>Item one</cci:p>
 <cci:p>Item two</cci:p>
 <cci:bullet_list>
 <cci:p>Nested one</cci:p>
 <cci:p>Nested two</cci:p>
 </cci:bullet_list>
 <cci:p>Item three</cci:p>
 </cci:bullet_list>
 <cci:p>Concluding paragraph.</cci:p>
 </cci:body>
 <cci:byline>
 <cci:p/>
 </cci:byline>
 <cci:quote>
 <cci:p/>
 </cci:quote>
</cci:ccitext>

4.1.3 The Pseudo-Storyline Structure

As you can see, the JSON data supplied by the Content Store (see section 4.1.1) has a flatter structure
than the XML document needed for export to CUE Print (see section 4.1.2). The bolded word in the
first paragraph is not nested inside the paragraph, and list items are not nested inside lists. In this
JSON structure, formatting and other kinds of annotations are defined by specifying the character

Copyright © 2020-2023 Stibo DX A/S Page 54

CUE Zipline User Guide

ranges to which they apply, and nested elements are unpacked and referenced indirectly. In line 8, for
example, the storyline's top-level elements are referenced as follows:

 "elements": ["/storyElements/1","/storyElements/2","/storyElements/3","/
storyElements/4","/storyElements/5"]

Further down the file, element 8 (the outer bulleted list) contains a similar entry referencing its
contents:

 "elements": ["/storyElements/10","/storyElements/11","/storyElements/12","/
storyElements/13"]

So in order to simplify the conversion task, CUE Zipline automatically generates the following
pseudo-storyline, a restructured version of the JSON data that more closely resembles the required
XML target structure:

{
 "storyline_id": "5b3251f0-33ba-11eb-b23d-5b6ae38640b0",
 "type": "print",
 "elements": [
 {
 "type": "print_head",
 "fields": {},
 "elements": [
 {
 "type": "headline",
 "fields": {
 "headline": {
 "value": "My Bullet Test",
 "ops": [
 {
 "index": 0,
 "length": 14,
 "name": "",
 "value": true,
 "text": "My Bullet Test"
 }
]
 }
 },
 "elements": [],
 "is_empty": false
 }
],
 "is_empty": false
 },
 {
 "type": "print_head_deck",
 "fields": {},
 "elements": [],
 "is_empty": true
 },
 {
 "type": "print_body",
 "fields": {},
 "elements": [
 {
 "type": "paragraph",
 "fields": {

Copyright © 2020-2023 Stibo DX A/S Page 55

CUE Zipline User Guide

 "paragraph": {
 "value": "Here is an introductory paragraph, followed by a list:",
 "ops": [
 {
 "index": 0,
 "length": 24,
 "name": "",
 "value": true,
 "text": "Here is an introductory "
 },
 {
 "index": 24,
 "length": 9,
 "name": "bold",
 "value": true,
 "sub": [
 {
 "index": 0,
 "length": 9,
 "name": "",
 "value": true,
 "text": "paragraph"
 }
]
 },
 {
 "index": 33,
 "length": 21,
 "name": "",
 "value": true,
 "text": ", followed by a list:"
 }
]
 }
 },
 "elements": [],
 "is_empty": false
 },
 {
 "type": "list_bulleted",
 "fields": {},
 "elements": [
 {
 "type": "paragraph",
 "fields": {
 "paragraph": {
 "value": "Item one",
 "ops": [
 {
 "index": 0,
 "length": 8,
 "name": "",
 "value": true,
 "text": "Item one"
 }
]
 }
 },
 "elements": [],
 "is_empty": false

Copyright © 2020-2023 Stibo DX A/S Page 56

CUE Zipline User Guide

 },
 {
 "type": "paragraph",
 "fields": {
 "paragraph": {
 "value": "Item two",
 "ops": [
 {
 "index": 0,
 "length": 8,
 "name": "",
 "value": true,
 "text": "Item two"
 }
]
 }
 },
 "elements": [],
 "is_empty": false
 },
 {
 "type": "list_bulleted",
 "fields": {},
 "elements": [
 {
 "type": "paragraph",
 "fields": {
 "paragraph": {
 "value": "Nested one",
 "ops": [
 {
 "index": 0,
 "length": 10,
 "name": "",
 "value": true,
 "text": "Nested one"
 }
]
 }
 },
 "elements": [],
 "is_empty": false
 },
 {
 "type": "paragraph",
 "fields": {
 "paragraph": {
 "value": "Nested two",
 "ops": [
 {
 "index": 0,
 "length": 10,
 "name": "",
 "value": true,
 "text": "Nested two"
 }
]
 }
 },
 "elements": [],

Copyright © 2020-2023 Stibo DX A/S Page 57

CUE Zipline User Guide

 "is_empty": false
 }
],
 "is_empty": false
 },
 {
 "type": "paragraph",
 "fields": {
 "paragraph": {
 "value": "Item three",
 "ops": [
 {
 "index": 0,
 "length": 10,
 "name": "",
 "value": true,
 "text": "Item three"
 }
]
 }
 },
 "elements": [],
 "is_empty": false
 }
],
 "is_empty": false
 },
 {
 "type": "paragraph",
 "fields": {
 "paragraph": {
 "value": "Concluding paragraph.",
 "ops": [
 {
 "index": 0,
 "length": 21,
 "name": "",
 "value": true,
 "text": "Concluding paragraph."
 }
]
 }
 },
 "elements": [],
 "is_empty": false
 }
],
 "is_empty": false
 },
 {
 "type": "print_assets",
 "fields": {},
 "elements": [],
 "is_empty": true
 },
 {
 "type": "print_quote",
 "fields": {},
 "elements": [],
 "is_empty": true

Copyright © 2020-2023 Stibo DX A/S Page 58

CUE Zipline User Guide

 }
],
 "inherited_from": "http://my-content-store:8080/webservice/escenic/storyline/
ad9c82a8-3314-11eb-b23d-5b6ae38640b0"
}

4.1.4 The Conversion Templates

This pseudo-storyline is then passed through the templates in the cue-print/storyline-to-
cue-print folder in order to produce the required output. The starting point is the cue-print/
storyline-to-cue-print/ccitext.xml file, which contains the skeleton of a CUE Print text:

<cci:ccitext xmlns:cci="urn:schemas-ccieurope.com"
 xmlns:ccix="http://www.ccieurope.com/xmlns/ccimlextensions">
 ...
 <cci:head>
 ...
 </cci:head>
 <cci:head_deck>
 ...
 </cci:head_deck>
 <cci:body>
 ...
 </cci:body>
 <cci:byline>
 <cci:p>
 ...
 </cci:p>
 </cci:byline>
 <cci:quote>
 <cci:p>
 ...
 </cci:p>
 ...
 </cci:quote>
 ...
</cci:ccitext>

where the ... ellipses represent Jinja2 template code that extracts content from the pseudo-storyline
and inserts it into the CUE Print text. The cci:head section of the template, for example, actually
looks like this:

 <cci:head>
 {% for print_head in storyline.elements|of_type('print_head') %}
 {% for element in print_head.elements %}
 {% if element.type == 'headline' %}
 <cci:p>{{element.fields.headline.value}}</cci:p>
 {% elif element.type == 'lead_text' %}
 <cci:p>{{element.fields['lead-text'].value}}</cci:p>
 {% endif %}
 {% endfor %}
 {% endfor %}
 </cci:head>

This template code searches the pseudo-storyline's elements array looking for entries with a type
property set to print_head. It then picks from this group's elements array any entries with type
properties of headline or lead_text and insert their values, wrapped in cci:p elements. The
storyline in this case only contains a headline, so the resulting output is:

Copyright © 2020-2023 Stibo DX A/S Page 59

https://palletsprojects.com/p/jinja/

CUE Zipline User Guide

 <cci:head>
 <cci:p>My Bullet Test</cci:p>
 </cci:head>

The body section of cue-print/storyline-to-cue-print/ccitext.xml includes references
to other templates that deal with the various story element types that may appear in the body of the
storyline:

 <cci:body>
 {%- for print_body in storyline.elements|of_type('print_body') %}
 {%- for element in print_body.elements|
of_type('headline','lead_text','paragraph','interview', 'list_bulleted',
 'list_numbered') %}
 {% include ['body/' + element.type + '.xml',
 element.type + '.xml'] %}
 {% endfor %}
 {% endfor %}
 </cci:body>

You can therefore easily extend CUE Zipline to support new story element types by adding your own
templates to the cue-print/storyline-to-cue-print/body folder, and adding a reference
here. If, for example, your publications include story elements called aside, you can extend this
transformation to handle them by adding a suitable aside.xml template to the cue-print/
storyline-to-cue-print/body folder, and adding a corresponding reference to cue-print/
storyline-to-cue-print/ccitext.xml:

 {%- for element in print_body.elements|
of_type('headline','lead_text','paragraph','interview', 'list_bulleted',
 'list_numbered', 'aside') %}

4.2 Handling Other Conversions
All the conversions work in the same basic way. In the case of the import templates such as cue-
print/cue-print-to-storyline/storyline.jinja2, the objective is to output a pseudo-
storyline, which CUE Zipline will then convert to the flat storyline format required by the Content
Store.

4.3 How To
This section contains examples of how template customizations can be used to solve various problems.

4.3.1 Supporting Annotated Image Captions

The default templates supplied with CUE Zipline only support plain text image captions. You can,
however, upgrade the templates to support formatted (that is, annotated) captions.

The first task is to modify your image story element type, if necessary, and ensure that its caption
field supports the annotations you require (bold and italic, for example). For general information
about story element types and how to define them, see Story Element Types..

Copyright © 2020-2023 Stibo DX A/S Page 60

http://docs.escenic.com/ece-pub-design-guide/7.10/story_element_types.html

CUE Zipline User Guide

Once that is done, you can then modify your CUE Zipline templates to support the transfer of
annotated captions back and forth between Content Store and CUE Print.

4.3.1.1 Content Store to CUE Print

The template /storyline-to-cue-print/image/ccitext.xml converts pseudo-storyline
versions of Content Store image story elements to CUE Print image caption texts.

The part of the template that is responsible for converting the caption looks like this:

<cci:cutline_c>
 {% if storyline.elements and storyline.elements[0].fields.caption.value %}
 {{ storyline.elements[0].fields.caption.value }}
 {% elif summary and summary.fields.caption.value %}
 {{ summary.fields.caption.value }}
 {% else %}
 {{ content.fields.caption.value }}
 {% endif %}
</cci:cutline_c>

The first if statement specifies what to do if the image storyline element contains a caption, and that
is where we want to support annotations. Replace the highlighted line with the following:

{% with field=storyline.elements[0].fields.caption %}
 {% include "common/text-content.xml.j2" %}
{% endwith %}

This assigns the content of the caption field (that is, a JSON object containing both text and
markup operations) to a variable called field and passes it to an included template, common/text-
content.xml.j2.

The next task is to create common/text-content.xml.j2. Create a common sub-folder in the
image folder and then create text-content.xml.j2 in the new folder.

Open the new file in an editor the file and enter the following:

{% for op in field.ops recursive %}
 {% if op.name == "bold" %}
 <cci:bold>{{ loop(op.sub) }}</cci:bold>
 {% elif op.name == "" %}
 {{ op.text }}
 {% else %}
 {{ loop(op.sub) }}
 {% endif %}
{% endfor %}

The first line ({% for op in field.ops recursive %}) starts a loop over the text "operations"
in the field. Remember that before executing the conversion templates, CUE Zipline converts the flat
storyline to a hierarchical structure. In this specific case, the field's annotations property has been
converted to a hierarchy of operations (ops).

Initially, the line enumerates the top level list of text operations, but the recursive keyword specifies
that the loop can be executed recursively to process annotations within annotations if necessary (a
bold annotation within an italic annotation, for example).

Copyright © 2020-2023 Stibo DX A/S Page 61

CUE Zipline User Guide

In the next line, the if statement tests whether the operation name is bold, in which case a CUE Print
bold tag (<cci:bold>) is wrapped around the operation, which is recursively resubmitted to the loop.

The next part of the if statement handles the actual text content:

{% elif op.name == "" %}
 {{ op.text }}

An operation with no name indicates plain text, so the template just outputs the text directly, using
{{ op.text }}.

Finally, the last part of the if statement handles any annotations that are not to be converted to CUE
Print tags:

{% else %}
 {{ loop(op.sub) }}
{% endif %}

Since the operation isn't plain text, the template just resubmits it to the loop, thereby ensuring that any
sub-operations are handled correctly. If, for example, the caption field supports italic annotations
as well as bold, then any italic operations will be "caught" by this else section. The italic
operation will be ignored, and its content passed back into the loop for processing. If the content is
just plain text, then it will be caught by the op.name == "" test. If the content includes any bold
operations, then they will be caught and handled by the op.name == "bold" test, and so on.

If you actually want to convert italic annotations and convert them to CUE Print tags, then you can
do so by adding a test to the template:

{% elif op.name == "italic" %}
 <cci:italic>{{ loop(op.sub) }}</cci:italic>

In this way it is possible to catch all annotations supported by the source story element type and either
convert them to corresponding tags in the target CUE Print text or ignore them and just pass on the
content.

There is however, a third possibility – you may want strip out some annotations: not only ignore the
annotation itself, but actually exclude the annotated content from the target. To do this you simply
omit the instruction following the relevant operation test (that is, add a test with no corresponding
action). To strip out all italic markup and content, for example, you could add the following line to the
template:

{% elif op.name == "italic" %}

4.3.1.2 CUE Print to Content Store

The template cue-print/cue-print-to-storyline/image converts a CUE Print image caption
text to a pseudo-storyline version of a Content Store image story element.

The part of the template that is responsible for converting the caption looks like this:

{
 "name": "caption",
 "value": {{ caption.text_content|d("")|trim|tojson }},
 "annotations": []
}

Copyright © 2020-2023 Stibo DX A/S Page 62

CUE Zipline User Guide

The highlighted instruction in the value field extracts the text content (ignoring any markup), defaults
to an empty string, trims any whitespace at the beginning and end of the text and then outputs the
result as a JSON string.

In order to preserve any markup in the CUE Print text and allow corresponding storyline annotations
to be created, the markup needs to be converted into pseudo-storyline operations. To achieve this, the
value and annotations fields in the template need to be replaced with an ops field like this:

 "ops": [
{% with cutline = caption.content.data.ccitext.cutline.cutline_c.p|first %}
 {% for node in cutline recursive %}
 {% if node.is_text %}
 {
 "name": "",
 "text": {{ node.text_content|tojson }}
 }
 {% elif node.local_name == "bold" %}
 {
 "name": "bold",
 "sub": [
 {{ loop(node) }}
]
 }
 {% endif %}
 {% if not loop.last %},{% endif %}
 {% endfor %}
{% endwith %}
]

The highlighted lines assign the content of the first paragraph in the CUE Print caption to a variable
called cutline and pass it to the enclosed for loop. Any subsequent paragraphs (should they exist)
are ignored. The long address of the caption paragraph reflects the deep XML structure used to
represent captions in CUE Print:

<attribute group="ExtraInfo" kind="xml" name="CaptionTextAsXml">
 <content>
 <data format="text/xml">
 <cci:ccitext xmlns:cci="urn:schemas-ccieurope.com">
 ...
 <cci:cutline>
 <cci:cutline_c>
 <cci:p>
 Lorem ipsum <cci:bold>dolor sit amet</cci:bold>, consectetur adipiscing
 elit. Pellentesque quis lobortis ligula. Morbi hendrerit non purus sit
 amet volutpat. Mauris pulvinar velit ut augue vulputate, ac volutpat
 est molestie.
 </cci:p>
 </cci:cutline_c>
 ...
 </cci:cutline>
 ...
 </cci:ccitext>
 </data>
 </content>
</attribute>

The for loop recursively enumerates the contents of the paragraph:

Copyright © 2020-2023 Stibo DX A/S Page 63

CUE Zipline User Guide

{% for node in cutline recursive %}
 ...
{% endfor %}

The first if test selects every plain text node in the paragraph, and outputs the text as an operation
with no name:

{% if node.is_text %}
 {
 "name": "",
 "text": {{ node.text_content|tojson }}
 }

The second test selects every <cci:bold> tag, wraps a bold operation its content, and recursively
resubmits the content to the loop:

{% elif node.local_name == "bold" %}
 {
 "name": "bold",
 "sub": [
 {{ loop(node) }}
]
 }

The final else handles any other tags in the paragraph. It just recursively resubmits the content to the
loop without wrapping an operation around it.

{% else %}
 {{ loop(node) }}
{% endif %}

The if at the end of the loop ensures that commas are inserted between the operations, as required by
JSON syntax.

{% if not loop.last %},{% endif %}

As is the case with the Content Store – CUE Print template you can handle additional formats by
adding more tests to the first if statement. For example:

{% elif node.local_name == "italic" %}
 {
 "name": "italic",
 "sub": [
 {{ loop(node) }}
]
 }

to convert italic tags to italic operations, or just:

{% elif node.local_name == "italic" %}

to strip out all italic content.

Copyright © 2020-2023 Stibo DX A/S Page 64

CUE Zipline User Guide

5 The Events Plugin

The Events plugin adds support to CUE Zipline for sending notification events to Amazon SQS or
message brokers supporting the AMQP protocol, for example RabbitMQ.

The Events plug-in implements an event handler that should be configured as an external processor
(or multiple, depending on the need), as described in section 3.10.5.

While external processors can be configured to poll resource URLs to monitor changes, the plug-in
only supports CUE Content Store change logs as the event source and will ignore URL polling events.

The Events plug-in will generate a JSON object, with configurable properties, based on the
information contained in updated CUE Content Store objects. The objects that will trigger notifications
are limited only by the objects that are listed in the CUE Content Store change logs monitored by the
configured processors.

For Amazon SQS, the plug-in will send the notification (JSON) object to a configured, pre-existing
queue. The plug-in will not try to create the queue if it doesn't exist. This is intentional.

For AMQP protocol based (supporting) message brokers, the plug-in will send the notification object
to a configured exchange, with an optional routing key. The plug-in will not try to create the exchange
and/or perform any queue bindings. This is intentional.

5.1 Installation
Installing the Events plug-in for CUE Zipline doesn't require any prerequisites other than CUE Zipline
and the Python libraries that are automatically added during installation.

The installation adds an example configuration file to the /etc/cue/zipline/processors.d
folder, which must be edited as described in section 5.2.

After installing CUE Zipline, perform the command (with administrator rights) described for the target
operating system below.

5.1.1 Ubuntu and Debian

To install the Events plug-in:

apt-get install cue-zipline-events

5.1.2 RedHat and CentOS

To install the Events plug-in:

yum install cue-zipline-events

Copyright © 2020-2023 Stibo DX A/S Page 65

CUE Zipline User Guide

5.2 Configuration
The example configuration file added to the /etc/cue/zipline/processors.d folder during
installation contains two example processors, one for Amazon SQS and one for RabbitMQ (AMQP
protocol based message brokers). The configurations are delimited by lines containing only "---". Just
remove the configuration object you won't be using.

The general options in the configuration file, related to external processors, are described in section
3.10.5. Of the general options, just note that the agent.factory property must contain the value
cue.plugin.events:EventNotifier.

The event plugin-specific configurations are described below.

5.2.1 Amazon SQS

For sending notifications to one or more Amazon SQS queues, the configuration configuration
object should contain the following properties:

type (required)
The type property must contain the value "amazonsqs" to make the Events plug-in send
notifications to an Amazon SQS queue.

session (optional)
The session configuration object defines properties that contain authorization credentials and
AWS region information, needed to connect to the Amazon SQS service.

If some (or all) properties aren't included here, the Events plug-in will fall back to information
configured for the AWS command-line tool, specifically in the ~/.aws/credentials and
~/.aws/config files.

The supported properties are:

aws_access_key_id or aws_access_key_id_file (optional)
Defines the ID of an access key of an (AMI) account, configured through the AWS console.
The account must have write access to the queue(s) configured below.

When using aws_access_key_id_file, the value should be a file, from which the
plug-in will read the first line as the access key ID.

aws_secret_access_key or aws_secret_access_key_file (optional)
Defines the secret key for the account. When using aws_secret_access_key_file,
the value should be a file, from which the plug-in will read the first line as the secret
access key.

region_name (optional)
Defines the AWS region to connect to (e.g., eu-central-1, us-west-1).

profile_name (optional)
If access key information is configured for the AWS command-line tool under a named
profile (i.e., not the default profile), then use the profile_name property to identify the
profile.

targets (required)
The targets property is a list of target queues, to which the plug-in will send events, when
content is updated in any of the monitored CUE Content Store change logs.

Each entry in the list supports the following properties:

Copyright © 2020-2023 Stibo DX A/S Page 66

CUE Zipline User Guide

queue (required)
queue is a configuration object that contains properties needed to identify the target
queue.

url (optional)
Uniquely identifies the queue, using the URL accessible from the AWS console.

queue_name (optional)
Identifies the queue by name. Used alone, this would target a queue with a name
matching the value of this property in the account that created the access key used
by the plug-in to access Amazon SQS.

Either url or queue_name must be specified.

queue_owner_aws_account_id (optional)
In case the queue exists in an account different from the one configured for the
plug-in, then this property identifies that target account.

The access key used to connect to Amazon SQS must have rights to write events to
the queue in this "foreign" account.

message_group_id (optional)
If the target queue is configured as a FIFO queue, then this property must define a
message group ID.

message_body (required)
Defines a list of named properties that should be part of the event sent to the target
queue.

Each entry in the list contains a name property that defines the name used for the
property of the event.

The value of each property can be extracted from meta-data (e.g., meta: id), fields
(field: caption), etc. The format of the entries is described in section 3.17.

The plug-in may export update events for multiple, very different object types (stories,
sections, containers, etc.), so it is best to limit this to a common set of attributes.
However, attributes that have no value for the updated object will just be left out of the
message body.

5.2.2 RabbitMQ (AMQP Protocol)

The CUE Zipline Events plug-in can send notifications to message brokers supporting the AMQP
protocol. Notifications are sent as JSON objects with properties that are configurable for each target.

The properties of the configuration object are as follows:

type (required)
To send notifications to an AMQP compatible message broker, this property must have the value
"sqs".

connection (required)
The connection configuration object contains properties that define the connection to the
message broker.

host (required)
Defines the host name of the server running the message broker.

port (required)
Defines the port number at which the message broker is listening.

Copyright © 2020-2023 Stibo DX A/S Page 67

CUE Zipline User Guide

use_tls (optional)
If the use_tls property is set to "true" or "yes", then the Events plug-in will use TLS
when accessing the message broker.

credentials (optional)
The credentials configuration object should contain user credentials if authentication
is needed to access the message broker.

Supported credentials properties are username, password, and password_file.

targets
The targets property is a list of target queues, to which the plug-in will send events, when
content is updated in any of the monitored CUE Content Store change logs.

Each entry in the list supports the following properties:

exchange (required)
The name of the exchange to send events to.

routing_key (required)
The routing key for events sent to this exchange.

message_body (optional)
Defines a list of named properties that should be part of the event sent to the target
queue.

Each entry in the list contains a name property that defines the name used for the
property of the event.

The value of each property can be extracted from meta-data (e.g., meta: id), fields
(field: caption), etc. The format of the entries is described in section 3.17.

The plug-in may export update events for multiple, very different object types (stories,
sections, containers, etc.), so it is best to limit this to a common set of attributes.
However, attributes that have no value for the updated object will just be left out of the
message body.

Copyright © 2020-2023 Stibo DX A/S Page 68

CUE Zipline User Guide

6 The Zip Export Plugin

The Zip Export plugin allows CUE Zipline to support export of content from the Content Store using
the Newsgate Plugin. The Newsgate plugin can be used to export a content item as a zip file containing
the content item itself (in the Content Store's XML-based syndication format) together with all the
additional resources it references (media files and so on).

This plugin provides an event handler for CUE Zipline that makes use of the Newsgate Plugin's web
service to export content items and write them either to disk or to an AWS S3 bucket. You can use it,
therefore, to set up an external processor that will listen for updates in all or part of a publication, and
export a zip file every time a content item is modified.

The zip files created by the Zip Export plugin are timestamped so that subsequent exports of the
same content item will not overwrite previous exports, but result in the creation of new files. It is the
consumer's responsibility to remove old versions of export files when they are no longer needed.

The following tasks must be carried out to make use of the Zip Export plugin:

1. Install the Zip Export plugin, as described in section 6.1.

2. Create one or more destinations for the exported zip files. (The target disk folder or AWS bucket
must exist, it will not be created by the Zip Export plugin.)

3. Configure one or more external processors (one for each export destination) as described in
section 6.2.

6.1 Installation
Before installing the Zip Export plugin, ensure that:

• CUE Zipline itself is correctly installed

• The Newsgate plugin is correctly installed, and the newsgate-webservice has been deployed

Once you have done that, the installation procedure is:

1. Log in as root, and enter the appropriate installation command:

For Ubuntu or Debian:
apt-get install cue-zipline-zip-export

For Redhat or CentOS:
yum install cue-zipline-zip-export

2. Configure the plugin, as described in section 6.2.

3. Restart CUE Zipline.

6.2 Configuration
During installation an example configuration file called zip-export.yaml.example is copied to
the /etc/cue/zipline/processors.d/ folder. Any .yaml files in this folder are automatically

Copyright © 2020-2023 Stibo DX A/S Page 69

http://docs.escenic.com/newsgate-guide/3.3/index.html

CUE Zipline User Guide

detected by CUE Zipline and used as processor configurations, as described in section 3.18. So to
configure the Zip Export plugin you need to:

1. Copy or rename /etc/cue/zipline/processors.d/zip-export.yaml.example to /
etc/cue/zipline/processors.d/zip-export.yaml.

2. Edit /etc/cue/zipline/processors.d/zip-export.yaml to meet your requirements.

If you want to export to multiple destinations, then you will need to repeat this process, using different
names for the resulting .yaml files.

The example file contains an external processor configuration, as described in section 3.10.5. Below is
a description of how to configure the Zip Export-specific parts of the file:

agent/factory
Must be set to cue.plugin.zip_export:ZipExporter.

agent/configuration
The content of the configuration object depends on whether you want to export to disk or to
an S3 bucket, as described in the following sections.

6.2.1 Export to Disk

For export to a folder on the local disk, the configuration object must contain the following
properties:

type (required)
Must be set to disk.

dir (required)
Path to the destination folder. This folder must exist, it will not be created by the plugin.

newsgate_webservice_endpoint/url (required)
The URL of the Newsgate web service's endpoint — most probably something like
https://content-store-host/newsgate-webservice.

newsgate_webservice_endpoint/max_chunk_size (optional)
The plugin downloads data from the Newsgate web service in chunks, in order to limit memory
usage in the case of very large zip files. This property sets the maximum chunk size in bytes. The
default value is 5242880 (5mb).

6.2.2 Export to S3

For export to an Amazon S3 Bucket, the configuration object must contain the following
properties:

type (required)
Must be set to s3.

bucket_name (required)
The name of the destination S3 bucket. This bucket must exist, it will not be created by the
plugin.

key_prefix (optional)
A key prefix for all the zip files uploaded to Amazon S3. Key prefixes are effectively S3 bucket
"folders" and look like folder paths. The default value is empty, which means that exported files
will be uploaded to the bucket's root folder.

Copyright © 2020-2023 Stibo DX A/S Page 70

CUE Zipline User Guide

newsgate_webservice_endpoint (required)
The URL of the Newsgate web service's endpoint — most probably something like
https://content-store-host/newsgate-webservice.

session (optional)
The session configuration object contains the authorization credentials and AWS region
information needed to connect to the S3 service. It is the same configuration object as is used for
configuring Amazon SQS in the Events plugin — see section 5.2.1 for details.

Copyright © 2020-2023 Stibo DX A/S Page 71

CUE Zipline User Guide

7 The Sophi Plugin

Sophi is a third-party web service (https://www.sophi.io/) that uses AI to offer automated content
curation based on a sophisticated analysis of both website content and usage data. It can be used
with CUE to provide automated desking of content on section pages and realtime feedback regarding
the performance of published content. The Sophi plugin is a CUE Zipline plugin that provides the
"plumbing" needed to support automated desking in CUE. It consists of two processors:

Sophi Content Feed
This processor monitors the Content Store for publishing events. Every time a new content item
is published or a published content item is modified, the content is sent to Sophi for analysis.

Sophi List Updater
This processor polls Sophi at regular intervals (say every 10 minutes) for curation
recommendations and updated performance data. It's called a "list updater" because CUE lists
are used to hold the content items that Sophi recommends for desking. The processor updates
the relevant lists in the Content Store and triggers republishing of the section pages on which
the lists are desked.

For more general information about Sophi, visit the Sophi website. For more information about the
Sophi-based features in CUE and how to enable them, see Automated Curation With Sophi.

7.1 Installation
Before installing the Sophi plugin, ensure that:

• CUE Zipline itself is correctly installed

• You have set up a Sophi account, and have the credentials CUE Zipline will need to access the Sophi
web service

Once you have done that, the installation procedure is:

1. Log in as root, and enter the appropriate installation command:

For Ubuntu or Debian:
apt-get install cue-zipline-sophi

For Redhat or CentOS:
yum install cue-zipline-sophi

2. Configure the plugin, as described in section 7.2.

3. Restart CUE Zipline.

7.2 Configuration
During installation an example configuration file called sophi-processor.yaml.example is
copied to the /etc/cue/zipline/processors.d/ folder. Any .yaml files in this folder are
automatically detected by CUE Zipline and used as processor configurations, as described in section
3.18. So to configure the Sophi plugin you need to:

Copyright © 2020-2023 Stibo DX A/S Page 72

https://www.sophi.io/
https://www.sophi.io/
http://docs.escenic.com/cue-technical-help/3.16/configuring_sophi.html

CUE Zipline User Guide

1. Copy or rename /etc/cue/zipline/processors.d/sophi-processor.yaml.example
to /etc/cue/zipline/processors.d/sophi-processor.yaml.

2. Edit /etc/cue/zipline/processors.d/sophi-processor.yaml to meet your
requirements.

The Sophi configuration file contains the configurations of two external processors. For general
information about external processor configurations, see section 3.10.5. Each processor configuration
is preceded by a YAML object delimiter:

7.2.1 Sophi Content Feed Configuration

The Sophi Content Feed processor monitors the Content Store for publishing events, and passes all
published and republished content items to Sophi for analysis.

The Sophi Content Feed configuration has the following overall structure:

name:
source:
 urls:
 username:
 password-file:
filter:
agent:
 factory:
 configuration:
 endpoint:
 environment:
 username:
 password-file:
 client-id:
 app-id-template:

Some of the properties in the supplied example file are predefined and do not need to be changed. Edit
the configuration as follows

name
The name of the processor. It appears in log messages, but is not used for anything else.

source/urls
An array of Content Store change log URLs, one for each publication that is to be controlled by
Sophi. For example:

source:
 urls:
 - https://content-store-host/webservice/escenic/changelog/publication/
tomorrow-online
 - https://content-store-host/webservice/escenic/changelog/publication/
living-online

source/username
A Content Store user name. This user name will be used to log into the Content Store web
service and access the change log. For example:

source:
 username: sophi_content_store

Copyright © 2020-2023 Stibo DX A/S Page 73

CUE Zipline User Guide

Read access only (a reader role) is sufficient for this user.

source/password_file
The path of a file containing the Content Store password. For example:

source:
 password_file: /var/run/secrets/sophi_content_store_password

You can, if you wish replace this property with a password property containing the actual
password:

source:
 password: notverysecret

This is, however, not recommended. It is better to keep your passwords in separate files that are
not committed to your code repository, for security reasons.

filter
The stream of events read from the change logs monitored by the processor is by default filtered
as defined in the main CUE Zipline configuration file. You can, however, also include a filter
specification in this configuration file. Any filter specified here will be applied in addition to the
main filter. The supplied example configuration contains the following processor-specific filter:

filter:
 - story_type:
 - storyline

This limits the processor to only handling storylines. The Sophi plugin only supports storyline
content.

See section 3.9 for general information about how to define filters.

agent/factory
The identifier of the code module responsible for passing events and content to Sophi. The
predefined setting of cue.plugin.sophi:SophiContentFeed must not be modified:

agent
 factory: cue.plugin.sophi:SophiContentFeed

agent/configuration/endpoint
The URL of the Sophi endpoint to which events and content are sent. This endpoint is specified
by Sophi:

agent:
 configuration:
 endpoint: https://collector.sophi.io

agent/configuration/environment
One of the following three keywords, identifying the type of installation you are configuring the
plugin for:

• dev (development)

• stg (staging)

• prod (production)

If you are configuring a development system, for example, then you should enter:

agent:
 configuration:
 environment: dev

Copyright © 2020-2023 Stibo DX A/S Page 74

CUE Zipline User Guide

agent/configuration/username
The agent needs Content Store credentials in order to be able to retrieve additional information
about updated content items. This property is usually set to the same value as source/
username (above), but you can use a different account if you wish.

agent/configuration/password_file
The password for the user specified in agent/configuration/password_file. Here too,
you can replace password_file with password, although it is not recommended to do so.

agent/configuration/client-id
A string provided by Sophi that identifies your Sophi account:

agent:
 configuration:This
 client-id: sophi-client-id

agent/configuration/app-id-template
Sophi uses application IDs to identify all the uploaded events and content belonging to
specific publications. This property specifies a template that generates unique application
IDs for all your publications. The required format and structure of application IDs is specified
by Sophi.

agent:
 configuration:
 app-id-template: "{client_id}:{publication_name}_{hostname}:cms"

You should not need to modify the supplied template.

In case of special requirements, you can replace the app-id-template property with an app-
ids array as follows:

agent:
 configuration:
 app-ids:
 news-publication: "sophi_client_id:tomorrow-online_content-store-host:cms"
 sport-publication: "sophi_client_id:living-online_content-store-host:cms"

You can use this alternative method if for some reason it is not possible to automatically
generate the required IDs using a template.

7.2.2 Sophi List Updater Configuration

The Sophi List Updater processor polls Sophi at regular intervals for curation recommendations.
It then updates the relevant publication sections in the Content Store and republishes them. Each
publication section that is to be wholly or partly controlled by Sophi must have one or more lists
intended to hold Sophi recommendations. Those lists must be desked as required on the section's
active section page. The Sophi List Updater will then fill those lists with recommendations it retrieves
from Sophi

The Sophi List Updater configuration has the following overall structure:

name:
source:
 polling:
 urls:
 auth:
 oauth:
 token_url:
 client_id:

Copyright © 2020-2023 Stibo DX A/S Page 75

CUE Zipline User Guide

 client_secret_file:
 audience:
 interval:
agent:
 factory: cue.plugin.sophi:SophiListUpdater
 configuration:
 content_store:
 url:
 username:
 password_file:
 default_list:
 publications:
 domain_name:

Some of the properties in the supplied example file are predefined and do not need to be changed. Edit
the configuration as follows

name
The name of the processor. It appears in log messages, but is not used for anything else.

source/polling/urls
This property must contain an array of URLs, one for each list controlled by Sophi:

source:
 polling:
 urls:
 - https://site-automation-api.ml.sophi.works/curatedHosts/tomorrow-
online.com/curator?page=ece_frontpage&widget=Automated+List+1
 - https://site-automation-api.ml.sophi.works/curatedHosts/tomorrow-
online.com/curator?page=news&widget=Automated+List+1
 - https://site-automation-api.ml.sophi.works/curatedHosts/living-
online.com/curator?page=ece_frontpage&widget=Automated+List+1

Currently, the URLs must have the following form, as shown in the example above:

https://site-automation-api.ml.sophi.works/curatedHosts/domain-name/curator?
page=section-name&widget=list-name

where:

• domain-name is the domain name of the publication to be updated.

• section-name is the unique name of section owning the list to be updated.

• list-name is the name of the list to be updated.

The URLs shown above are based on Sophi's requirements at the time of writing. Stibo DX
cannot guarantee that they will continue to be correct.

source/polling/auth/oauth/token_url
The URL of the Sophi endpoint to which OAuth credentials are sent, in order to obtain an
authentication token:

source:
 polling:
 auth:
 oauth:
 token_url: sophi-token-endpoint-url

This URL must be supplied by Sophi.

Copyright © 2020-2023 Stibo DX A/S Page 76

CUE Zipline User Guide

source/polling/auth/oauth/client_id
An OAuth client ID (not the same as the client-id property used in the Content Feed
configuration).

source:
 polling:
 auth:
 oauth:
 client_id: oauth-client-id

This ID must also be supplied by Sophi.

source/polling/auth/oauth/client_secret_file
The path of a file containing an OAuth secret. For example:

source:
 polling:
 auth:
 oauth:
 client_secret_file: /etc/cue/zipline/secrets/sophi-client-secret

The OAuth secret in the file must be supplied by Sophi. You can, if you wish replace this
property with a client_secret property containing the actual secret:

source:
 polling:
 auth:
 oauth:
 audience: notverysecret

This is, however, not recommended. It is better to keep secrets in separate files that are not
committed to your code repository, for security reasons.

source/polling/auth/oauth/audience
The URL of the site that the supplied OAuth credentials are intended to give access to:

source:
 polling:
 auth:
 oauth:
 audience: https://api.sophi.works

source/polling/interval
Specifies how frequently the List Updater is to request updates from Sophi, for example:

source:
 polling:
 interval:
 minutes: 10

A request is sent to every URL specified in source/polling/urls once in each time interval,
and if you have specified more than one URL, then the requests are spread evenly across the
interval. If, for example, you specify an interval of 10 minutes as shown, and specify 10 URLs in
source/polling/urls, then one request will be sent each minute.

You can replace the minutes property with a different time unit - weeks, days, hours,
minutes, or seconds. For example:

source:
 polling:
 interval:
 hours: 1

Copyright © 2020-2023 Stibo DX A/S Page 77

CUE Zipline User Guide

agent/factory
The identifier of the code module responsible for polling Sophi and updating the Content Store.
The predefined setting of cue.plugin.sophi:SophiListUpdater must not be modified:

agent
 factory: cue.plugin.sophi:SophiListUpdater

agent/configuration/content_store/url
The URL of the Content Store webservice. For example:

agent:
 configuration:
 content_store:
 url: https://content-store-host/webservice/

agent/configuration/content_store/username
A Content Store user name. This user name will be used to log into the Content Store web
service and update lists. For example:

agent:
 configuration:
 content_store:
 username: sophi_content_store

Read/write access (an editor role) is required for this user.

source/password_file
The path of a file containing the Content Store password. For example:

agent:
 configuration:
 content_store:
 source:
 password_file: /var/run/secrets/sophi_content_store_password

You can, if you wish replace this property with a password property containing the actual
password:

agent:
 configuration:
 content_store:
 source:
 password: notverysecret

This is, however, not recommended. It is better to keep your passwords in separate files that are
not committed to your code repository, for security reasons.

Copyright © 2020-2023 Stibo DX A/S Page 78

CUE Zipline User Guide

8 Clustering

CUE Zipline is composed of two parts:

• The front end, which provides web services to external clients such as the CUE editor, drop
resolvers, CUE Print and so on.

• The core, which monitors the Content Store, waiting for changes to content items that have
"shadow" content in external systems (CUE Print and DC-X, plus other systems via NewsML
export).

When running a CUE Zipline cluster, the front end web services should be load balanced, in order to
distribute incoming client requests between the instances in the cluster.

The core activity of monitoring the Content Store for changes cannot, however, be load balanced in
this way. Only one CUE Zipline instance (called the "active" instance) monitors the Content Store. The
other instances in the cluster are said to be "inactive", even though they are available for processing
front end web service requests.

8.1 Front End
All external systems that send requests to CUE Zipline send them to its web service endpoint. Any
request sent to a particular CUE Zipline instance's endpoint will be processed on that instance. In
order to distribute the load between multiple CUE Zipline instances, therefore, the requests must be
actually directed to those specific instances. The easiest way to do this is to enable load balancing in

Copyright © 2020-2023 Stibo DX A/S Page 79

CUE Zipline User Guide

the reverse proxy that you should already be using to handle TLS termination for CUE Zipline (see
section 2.4).

With the reverse proxy handling load balancing, it is then only necessary to specify the proxy as the
CUE Zipline endpoint when configuring external client systems (that is, CUE Print, drop resolvers and
the CUE editor).

8.1.1 Load Balancing

Web service requests to the front end can be load balanced, using any standard reverse proxy. The
example provided in section 2.4 shows a proxy configuration for a single instance CUE Zipline
installation.

For nginx, the only required change is to create an upstream definition for the CUE Zipline
instances and then reference those back ends in the proxy_pass statement. For example:

upstream backends {
 server zipline01:12791;
 server zipline02:12791;
 }

 server {
 ...
 location ~ ^/cue-print-zipline/(index.xml|escenic/text|escenic/convert/default) {
 ...
 proxy_pass http://backends;
 ...
 }
 }

The upstream configuration should list the web service addresses for each instance in the CUE
Zipline cluster. This address is the one configured in the section 3.4 configuration object. The default is
port 12791 on the server the instance is running on.

This default configuration will spread the load between your CUE Zipline instances using a round-
robin algorithm. nginx does however, offer alternative load distribution algorithms.

The protocol scheme specified in the proxy_pass declaration must be http as shown above, since
CUE Zipline only supports HTTP.

Copyright © 2020-2023 Stibo DX A/S Page 80

CUE Zipline User Guide

8.2 Core
The CUE Zipline cores communicate with each other via private network connections, using the
network addresses defined in the members list configured in the section 3.14 configuration object.

The members list is a list of host name and port pairs for each instance in the cluster. Each instance
opens connections to the other instances by connecting to these network addresses.

The network address of each instance is defined by the listen_address property of the cluster
configuration object. The listen address may be specified as a wild-card (e.g. 0.0.0.0) in order to
listen on all network interfaces.

The port number of the cluster listen_address must be different from the server port number,
because the communication protocol is different. By default, the server port is 12791 and the cluster
listen address port is 12790.

The host names and addresses specified in the members list may not be specified as wild cards. They
must be host names that can be resolved or IP addresses, and they must be accessible to the other
instances in the cluster.

8.2.1 Negotiations

On startup, or whenever an active instance shuts down, the cluster instances negotiate to determine
which one will be active.

Priority is given to the instance with the highest ID (as specified in the instance_id property in
the cluster configuration object). If not all instances are running during the negotiation process,
however, then another instance may be designated active instead.

If instance_ids are not explicitly set, then instances are assigned random IDs each time they are
started. If instances are regularly re-started, this introduces some randomness with regard to which
instance is given priority during negotiation.

After negotiation, all the non-active instances will enter the inactive state, in which they do not process
any Content Store updates. If the active instance shuts down or disappears, the idle instances will re-
enter negotiations to find a new active instance.

8.2.2 Change Log Monitoring

As updates are processed in the active instance, its progress is automatically shared with the inactive
instances in the cluster. The inactive instances store this progress data locally, in order to be able to
continue processing should they become the active instance.

Copyright © 2020-2023 Stibo DX A/S Page 81

CUE Zipline User Guide

Processing of updates detected in the change log are only performed on the active instance. No
processing is performed on the inactive instances.

8.2.3 Example

The following example is based on a cluster of three instances, each running on its own server. The
instance_id property is different on each instance, but they all use the same listen_address (the
0.0.0.0 wild-card) and the members list must be the same on each server.

Here, for example, is the configuration for the first server:

zipline_01
cluster:
 instance_id: zipline_01
 listen_address: 0.0.0.0:12790
 members:
 - ziplinesrv01.cust.cue.cloud:12790
 - ziplinesrv02.cust.cue.cloud:12790
 - ziplinesrv03.cust.cue.cloud:12790

A string comparison is used when comparing instance IDs during active instance negotiation, so
zipline_9 would have higher priority than zipline_10. That is why zero-padded number are used
to construct the example IDs.

The listen address is set to port 12790 on all network interfaces of the server running this instance.
Since this is the default value it could be omitted.

The member list includes the domain name and port number of each cluster instance, including
this instance. This local instance could be omitted, but including it causes no problems and makes
maintaining the configuration files easier (they can all be identical apart from the instance_id
setting).

The other two configuration files, then, look like this:

zipline_02
cluster:
 instance_id: zipline_02
 listen_address: 0.0.0.0:12790
 members:
 - ziplinesrv01.cust.cue.cloud:12790
 - ziplinesrv02.cust.cue.cloud:12790
 - ziplinesrv03.cust.cue.cloud:12790

zipline_03
cluster:
 instance_id: zipline_03
 listen_address: 0.0.0.0:12790
 members:
 - ziplinesrv01.cust.cue.cloud:12790
 - ziplinesrv02.cust.cue.cloud:12790
 - ziplinesrv03.cust.cue.cloud:12790

As mentioned in section 3.14, you can define a ZL_CLUSTER_LISTEN_ADDRESS environment variable
to hold the instance ID on each server. Since the default value of the listen_address property is
0.0.0.0, this means you can in fact use the same configuration file on all instances:

Copyright © 2020-2023 Stibo DX A/S Page 82

CUE Zipline User Guide

cluster:
 members:
 - ziplinesrv01.cust.cue.cloud:12790
 - ziplinesrv02.cust.cue.cloud:12790
 - ziplinesrv03.cust.cue.cloud:12790

The zipline_01 instance could then be started as follows, for example:

$ export ZL_CLUSTER_LISTEN_ADDRESS=zipline_01

$ zipline

Copyright © 2020-2023 Stibo DX A/S Page 83

CUE Zipline User Guide

9 Logging

CUE Zipline generates log output using the standard Python logging subsystem. The log output is
designed to provide information for troubleshooting integration issues.

Four different levels of log message are generated by CUE Zipline:

Level Description

ERROR Generated
for
events
that are
considered
to be
processing
errors,
such as
when a
back-end
service
responds
with an
error to
a request
that is
expected
to
succeed.

WARNING Generated
for less
serious
adverse
events,
such as
when a
back-end
service
responds
with an
error to
a request
that
is not
expected
to always
succeed.

Copyright © 2020-2023 Stibo DX A/S Page 84

https://docs.python.org/3.6/library/logging.html

CUE Zipline User Guide

Level Description

INFO Generated
for
normal
events,
describing
what
CUE
Zipline
is doing.
When
handling
a
content
item
update,
for
example,
INFO
messages
will be
logged
when the
event is
received,
when the
items
required
to
process
the
request
are
resolved,
when
back-end
requests
are sent
and so
on.

DEBUG More
detailed
messages
describing
how
CUE
Zipline
handles
events.

Copyright © 2020-2023 Stibo DX A/S Page 85

CUE Zipline User Guide

Level Description

DEBUG
messages
may be
logged,
for
example,
for each
of the
individual
requests
sent to a
back-end
service
while
resolving
a
content
item for
processing.

You can control which of these messages are actually written to file, where they are sent, how long they
are kept and so on by configuring the logging system.

9.1 Configuration
CUE Zipline is delivered with a default logging configuration which you will find in the logging
section of the configuration file (/etc/cue/zipline/zipline.yaml):

logging:
 version: 1
 formatters:
 precise:
 format: '%(asctime)s - %(levelname)-5s - %(name)s - %(message)s'
 style: '%'
 handlers:
 file:
 class: logging.handlers.TimedRotatingFileHandler
 formatter: precise
 filename: /var/log/zipline/zipline.log
 when: midnight
 level: DEBUG
 encoding: UTF-8
 root:
 level: DEBUG
 handlers:
 - file
 loggers: {}

This simple configuration writes all messages to the file /var/log/zipline/zipline.log. The
file is overwritten at midnight each day.

Copyright © 2020-2023 Stibo DX A/S Page 86

CUE Zipline User Guide

In the installation contrib folder (/usr/share/cue/cue-zipline/contrib/), you will find a
more sophisticated logging configuration in a file called logging-config.yaml:

version: 1

formatters:
 precise:
 format: '%(asctime)s - %(levelname)-5s - %(name)s - %(message)s'
 style: '%'

handlers:
 debugfile:
 class: logging.handlers.TimedRotatingFileHandler
 formatter: precise
 filename: /var/log/zipline/zipline.debug.log
 backupCount: 7
 when: midnight
 level: DEBUG
 encoding: UTF-8
 file:
 class: logging.handlers.TimedRotatingFileHandler
 formatter: precise
 filename: /var/log/zipline/zipline.log
 backupCount: 7
 when: midnight
 level: ERROR
 encoding: UTF-8

Root logger configuration
root:
 level: DEBUG
 handlers:
 - debugfile
 - file

loggers:
 chardet.charsetprober:
 level: ERROR
 cue.zipline.text.transform_text.TextTransformer:
 level: INFO
 cue.concurrent.actor.Actor:
 level: INFO
 cue.zipline.audit:
 level: CRITICAL

This configuration only writes ERROR messages to /var/log/zipline/zipline.log, but in
addition writes all messages to /var/log/zipline/zipline.debug.log. In addition, the
backupCount settings of 7 means that 7 backup copies of each log file are retained, so that you always
have all messages from the preceding week available.

On startup, CUE Zipline looks in two places for a logging configuration:

• First, it looks for a standalone logging configuration in /etc/cue/zipline/logging-
config.yaml. If it finds a configuration here, then that is the one it uses.

• If /etc/cue/zipline/logging-config.yaml does not exist, then it looks for a logging
section in /etc/cue/zipline/zipline.yaml and uses the configuration it finds there.

Copyright © 2020-2023 Stibo DX A/S Page 87

CUE Zipline User Guide

• If it cannot find a logging configuration in either place, then CUE Zipline uses its internal defaults,
which provide minimal functionality.

You can therefore choose where to keep your logging configuration. Either edit the default
configuration in /etc/cue/zipline/zipline.yaml to meet your requirements, or copy /usr/
share/cue/cue-zipline/contrib/logging-config.yaml into the /etc/cue/zipline/
folder and edit that instead. If you decide to use a standalone logging-config.yaml file, then it
is a good idea to remove the logging section from /etc/cue/zipline/zipline.yaml to avoid
confusion.

For detailed information about the logging configuration format, see here.

Copyright © 2020-2023 Stibo DX A/S Page 88

https://docs.python.org/3.6/library/logging.config.html#dictionary-schema-details

CUE Zipline User Guide

10 Monitoring

CUE Zipline incorporates a monitoring service that supplies reports about CUE Zipline's activities.
Two kinds of report are generated:

• On-demand JSON reports returned in response to requests sent to CUE Zipline's monitoring
endpoint.

• Automated plain text reports generated at specified intervals and written to the CUE Zipline log file.

For information on configuring automated reports, see section 3.15.

For information on how to request JSON reports, see section 10.1, and for information on the structure
of the JSON reports, see section 10.2.

10.1Requesting a Report
To retrieve a report from CUE Zipline:

1. Send an initial GET request to CUE Zipline's root endpoint:

curl http://localhost:12791/cue-print-zipline/

CUE Zipline will respond by returning an XML discovery document containing the URLs of
its various endpoints, including the the monitoring endpoint. The monitoring endpoint can be
identified by the relation type monitoring:

<endpoint xmlns="http://xmlns.ccieurope.com/ngece-bridge"
 xml:base="http://localhost:12791/cue-print-zipline/" ...>
 ...
 <link rel="monitoring" href="monitoring"/>
</endpoint>

2. Retrieve the monitoring endpoint URL fragment from the link element's href attribute and
construct a new URL (http://localhost:12791/cue-print-zipline/monitoring in
this case):

3. Submit a new request to the monitoring endpoint:

curl http://localhost:12791/cue-print-zipline/monitoring

CUE Zipline will then return a report on its recent activities.

By default, the report will contain information about CUE Zipline's activity during the previous 15
minutes. You can, however modify the reporting period in two ways:

• You can set a different default reporting period using the default_range configuration
parameter (see section 3.15).

• You can specify the required reporting period for an individual request by appending a period
parameter to it:

curl http://localhost:12791/cue-print-zipline/monitoring?period=24h

Copyright © 2020-2023 Stibo DX A/S Page 89

CUE Zipline User Guide

You can specify the reporting period in either hours (24h), minutes (30m) or seconds (30s). The
period always represents the time immediately before the request was submitted: the last 24 hours, 30
minutes or 30 seconds. You can, if you wish request reporting for multiple periods in a single request:

curl http://localhost:12791/cue-print-zipline/monitoring?period=24h,30m,30s

The specified periods must be separated by commas.

10.2Report Structure
The monitoring report is a JSON document with the following overall structure:

{
 "items": [],
 "query": {
 "period": ["24h","30m","30s"]
 }
}

The report has two top-level properties:

items
An array containing the main body of the report.

query
Contains the parameters from the query that initiated the report. This information may be
useful in the development of monitoring plug-ins.

The items array contains a list of entries, each containing information about some aspect of CUE
Zipline operation during the requested period(s):

{
 "component": "...",
 "data": ...
}

Each entry has two properties:

component
The name of the CUE Zipline report section (often, but not always, the name of a component of
the CUE Zipline system.

data
Information about this component. The structure of this property depends on the type of
component. In most cases, the property is an array that can contain one report object for each
requested time period. In some cases, however, (currently only for the state component) an
array is not required, and data is a single object.

10.3Components
A report can contain the following components:

Copyright © 2020-2023 Stibo DX A/S Page 90

CUE Zipline User Guide

10.3.1 Restarts

This component contains information about restarts during the requested period(s).

{
 "component": "/restarts",
 "data": [
 {
 "range": "15m",
 "kills": 0,
 "restarts": 1
 }
]
}

range
The time period for which the data is aggregated.

restarts
The number of times this instance of CUE Zipline has been restarted in the specified period.

kills
The number of the reported restarts that were forced.

10.3.2 State

The current state (active/inactive) of this CUE Zipline instance.

{
 "component": "/state",
 "data": {
 "state": "active"
 "remotes": [
 "01_zipline"
],
 "disconnected": [],
 }
}

state
The state of this CUE Zipline instance. active means it is actively processing updates from
Content Store, inactive means it is not.

In a CUE Zipline cluster only one instance is active at any given time: the other instances will
report that they are inactive. If the active instance is shut down, one of the inactive instances will
change state to "active and start processing updates.

remotes
The IDs of all connected remote instances in a CUE Zipline cluster. In a cluster with three
members, this list should always contain two entries (on all three instances). If this is not the
case, then one or more instances are not communicating properly.

disconnected
The IDs of all instances that have been connected in the past, but are not currently connected. If
this list contains entries and all your CUE Zipline instances are running, then the instances are
not communicating properly.

Copyright © 2020-2023 Stibo DX A/S Page 91

CUE Zipline User Guide

10.3.3 Processors

A component is generated for each processor running on the CUE Zipline instance:

• /processors/cue_print for CUE Print integration

• /processors/dcx for DC-X integration

• /processors/newsml for NewsML export

All these components have the same structure:

{
 "component": "/processors/newsml",
 "data": [
 {
 "range": "15m",
 "count": 6,
 "updates": {
 "success": 6
 },
 "waiting_time": {
 "average": 2.7780989011128745,
 "max": 6.311340093612671,
 "min": 0.5846478939056396
 }
 "processing_time": {
 "average": 0.7568506002426147,
 "max": 1.651845932006836,
 "min": 0.04902076721191406
 },
 }
]
}

range
The length of the time period.

count
The number of events processed in the time period. This does not include events filtered out
either by the global filter or a processor-specific filter.

updates
The outcomes of the processed events. The possible outcomes are:

• success (update completed, successful)

• failure (update failed during processing)

• partial (update completed, partly successful)

• pending (update still in progress)

waiting_time
The length of time elapsed before events were processed during this time period in seconds.
Three different values are reported: average, minimum and maximum waiting times.

The waiting time includes the common processing done by CUE Zipline to resolve an updated
content item, so it can never be zero.

Copyright © 2020-2023 Stibo DX A/S Page 92

CUE Zipline User Guide

processing_time
The length of time spent processing each event, in seconds. Three different values are reported:
average, minimum and maximum processing times.

Copyright © 2020-2023 Stibo DX A/S Page 93

CUE Zipline User Guide

11 Recording Catch Files

CUE Zipline provides two tools for controlling the recording and saving of CUE Print catch files.
Catch files are diagnostics files that can be recorded and saved during CUE Print sessions. In general,
catch files are recorded by starting a new CUE Print session with catch file recording enabled. The
tools provided with CUE Zipline are:

• A command line utility called zl-catch

• A web API

11.1zl-catch
zl-catch provides a convenient way of recording catch files for analyzing communication between
CUE Print and CUE Zipline, from the CUE Zipline host. When you enable/disable recording with zl-
catch, zl-catch restarts the CUE Print session for you with the requested catch file setting.

The syntax of the zl-catch command is:

zl-catch [-h] [-f configuration-file-path] [{status,enable,disable,save}]

Options

-h
Displays help

-f configuration-file-path
The path of the CUE Zipline configuration file. zl-catch needs access to the configuration file
in order to retrieve the URL of the CUE Print endpoint. If the CUE Zipline configuration file is
stored in a standard location then this option is not required.

Subcommands

status
Displays the current status of catch file recording for CUE Zipline. This is the default action.

enable
Starts a new CUE Print session with catch recording enabled. If recording was already enabled, a
new session is still started and any activity that was already recorded is discarded.

disable
Starts a new CUE Print session with catch recording disabled.

save
Instructs CUE Print to save a catch file containing any activity recorded since the last session
restart. The name of the file is written to the console. It is also written to the CUE Zipline log file
as an INFO level message. The catch file is of course saved on the CUE Print host, not the CUE
Zipline host.

Copyright © 2020-2023 Stibo DX A/S Page 94

CUE Zipline User Guide

11.2The Catch File API
CUE Zipline exposes a catch file API at cue-zipline/cue-print/catch. This API is used by the zl-
catch command, but is also available for use by remote management applications.

The response from the API endpoint is a JSON object containing the current recording status and links
that can be used to perform actions appropriate for the current state. For example: executing

curl http://localhost:12791/cue-print-zipline/cue-print/catch

will return the following if catch file recording is currently enabled:

{
 "self": "http://localhost:12791/cue-print-zipline/cue-print/catch",
 "home": {
 "data": {"catch": "enabled", "status": "ok"},
 "actions": [
 {
 "name": "home",
 "href": "http://localhost:12791/cue-print-zipline/cue-print/catch",
 "rel": ["home", "status"],
 "method": "GET"
 },
 {
 "name": "disable",
 "href": "http://localhost:12791/cue-print-zipline/cue-print/catch/
disable",
 "rel": ["disable"],
 "method": "PUT"
 },
 {
 "name": "save",
 "href": "http://localhost:12791/cue-print-zipline/cue-print/catch/
save",
 "rel": ["save"],
 "method": "PUT"
 }
]
 }
}

Note that in this case, no enable action is offered, since recording is already enabled.

Copyright © 2020-2023 Stibo DX A/S Page 95

